por djodjo_2005 » Ter Out 09, 2012 22:04
Distância de frenagem é aquela percorrida por um carro do instante em que seu freio é acionado até o momento em que ele para. Essa distância é diretamente proporcional ao quadrado da velocidade que o carro está desenvolvendo no instante em que o freio é acionado.
O gráfico abaixo indica a distância de frenagem d, em metros, percorrida por um carro, em função de sua velocidade , em quilômetros por hora.
http://www.revista.vestibular.uerj.br/l ... o/Q4_6.PNGAdmita que o freio desse carro seja acionado quando ele alcançar a velocidade de 100 km/h. Calcule sua distância de frenagem, em metros.
Alguém poderia me explicar, o por que da constante k?
d = kv²
Por que foi usado esse k?
Tenho a resposta caso alguém queira.
Obrigado.
-
djodjo_2005
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Out 09, 2012 21:58
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por young_jedi » Ter Out 09, 2012 22:22
voce derve conhecer a equação de Torricelli, que diz

onde v é a velocidade final do objeto

é a velocidade incicial d é a distancia percorrida e a é a aceleração
como a velocidade final é igual a zero(quando ele para)
então a equação fica


substituindo

chega-se na equação

substituindo pelo ponto no grafico os valores de v e de d encontra-se k e com isso substituindo a velocidade de 100 encontra-se d.
obs: quando tiver figuras poste ele no topico utilizando a opção de anexos, a imagem deve ser .jpg
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por djodjo_2005 » Ter Out 09, 2012 22:27
Nossa, muito obrigado Young... A resposta veio bem rápida!
E desculpe pela imagem

Agora já sei como é!
Muito obrigado de verdade, por me explicar!
Boa noite =)
-
djodjo_2005
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Out 09, 2012 21:58
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvidas sobre Função Quadrática
por Aroldo » Ter Jun 21, 2011 20:35
- 4 Respostas
- 2785 Exibições
- Última mensagem por Aroldo

Ter Jun 21, 2011 22:52
Funções
-
- Questão da UERJ sobre função do 1º grau
por kamillanjb » Qua Fev 16, 2011 19:47
- 7 Respostas
- 5888 Exibições
- Última mensagem por kamillanjb

Dom Fev 27, 2011 20:10
Funções
-
- [Derivada de Função Trigonométrica] Questão sobre Cosec x
por Elvis » Sáb Jun 13, 2015 13:42
- 3 Respostas
- 4169 Exibições
- Última mensagem por Cleyson007

Dom Jun 14, 2015 18:44
Cálculo: Limites, Derivadas e Integrais
-
- Função quadrática
por Ananda » Sex Mar 28, 2008 16:00
- 6 Respostas
- 8943 Exibições
- Última mensagem por admin

Sex Mar 28, 2008 21:25
Funções
-
- Função quadratica
por Aline » Qui Jun 18, 2009 14:22
- 2 Respostas
- 2504 Exibições
- Última mensagem por Cleyson007

Sex Jun 19, 2009 10:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.