• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função exponencial] Não entendi como chegou a formula

[Função exponencial] Não entendi como chegou a formula

Mensagempor Leti Moura » Ter Jun 12, 2012 21:16

Cada golpe de uma bomba extrai 10% de óleo de um tanque. A capacidade do tanque é 1m³ e, inicialmente, está cheio.
a) Após o 5º golpe, qual é o valor mais próximo para o volume de óleo que permanece no tanque?
b)Qual é a lei da função que representa o volume de óleo que permanece no tanque após n golpes?


Eu entendo que sempre que há um golpe extrai 10%(0,1) do volume que está no tanque, ficando 90%(o,9). Mas eu não entendo por que a fórumla é f(n)=1.(0,9)^n
Leti Moura
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Jun 12, 2012 20:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia de Pesca
Andamento: cursando

Re: [Função exponencial] Não entendi como chegou a formula

Mensagempor Fabricio dalla » Ter Jun 12, 2012 22:45

isso é igual a formula de juros composto
M=c{\left(1-i \right)}^{n}

c= o que vc tem (1 m cubico) que no juros composto é seu capital
i=juros alli no caso ele sempre tira 10%(0,1 do que vc tem)
M=montante que no caso e f(x)
n=os golpes
obs dependendo da questão o i pode ser negativo ou positivo nesse caso e negativo porque esta tirando de algo
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Função exponencial] Não entendi como chegou a formula

Mensagempor Russman » Qua Jun 13, 2012 00:57

Existem duas formas, na minha opinião, de resolver esse problema. A primeira é observando o comportamento do volume de óleo do tanque para um número finito de golpes. Este, a fim de identificar um padrão e modelar uma função V(n) que calcule o volume de óleo do tanque após o n-ésimo golpe. A segunda forma é identificar uma relação básica de recorrência, que existe pro trás do problema, e solucioná-la.

Pela primeira forma:
Veja que V(0) representa o volume inicial de óleo no tanque, isto é, antes de iniciados os golpes. Portanto, temos a sequência de N volumes sucessivos de óleo no tanque dada por V(n)=\begin{Bmatrix}
V(0),V(1),V(2),V(3),...,V(N)
\end{Bmatrix}

Como cada golpe extrai 10% do volume do tanque, então temos, para V(1) a relação V(1) = V(0) - \frac{10}{100}V(0) = V(0)(1-0,1)= 0,9.V(0).
Para V(2) então teremos V(2) = V(1) -\frac{10}{100}V(1) = 0,9.V(1) = 0,9^{2}V(0).
Você não tardará em perceber que é válida para esta a relação V(n) = V(0).(0,9)^{n}.

Pela segunda forma:
É fato que o volume de óleo no tanque do n-ésimo golpe tira 10% do volume de óleo que existia no tanque após o (n-1)-ésimo golpe. Assim, temos a seguinte equação recorrênte:

V(n) = V(n-1)-0,1V(n-1) = V(n-1).(0,9).

Para solução desta suponhamos uma função do tipo V(n) = c.L^{n}, onde c é uma constante arbitrária e L um valor a ser determinado real ou complexo. Aplicando esta hipótese na equação obtemos

c.L^{n} =  c.L^{n}.L^{-1}.(0,9)\Rightarrow c.L^{n}= c.L^{n}((0,9)L^{-1}).

Supondo que L\neq 0, pois nesse caso a solução seria trivial, podemos simplificar c.L^{n} na equação e obtemos L=0,9.

Portanto a solução da equação é [tex]V(n) = c.(0,9)^{n}[/tex] onde c = V(0), pois V(0) = c.(0,9)^{0} = c.

Exatamente a mesma solução que obtivemos por inspeção!

Para resolver a letra a) basta susbtituir n=5.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?