por manuoliveira » Sex Mar 23, 2012 18:25
Como demonstrar genericamente que, sendo f e g são funções ímpares, então f + g e f - g são funções ímpares???
Obrigada..
-
manuoliveira
- Usuário Parceiro

-
- Mensagens: 61
- Registrado em: Qui Abr 01, 2010 19:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
por fraol » Qui Abr 05, 2012 23:13
Como

e

são funções ímpares então

e

.
Chamemos a soma de

e

de

, então

.
Assim temos que

.
Como

e

são funções ímpares, temos:

e
![h(-x) = -[f(x) + g(x)] h(-x) = -[f(x) + g(x)]](/latexrender/pictures/cf5bb00300efad650f5a15d390e18cbd.png)
ou

o que mostra que a soma de funções ímpares também é ímpar.
Você pode usar um procedimento análogo para a diferença entre

e

.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por manuoliveira » Sáb Abr 14, 2012 19:33
Obrigadinha pela ajuda!!
-
manuoliveira
- Usuário Parceiro

-
- Mensagens: 61
- Registrado em: Qui Abr 01, 2010 19:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Química
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Demonstrar - Primitivas
por samra » Qua Out 03, 2012 23:54
- 3 Respostas
- 1765 Exibições
- Última mensagem por young_jedi

Sex Out 05, 2012 11:24
Cálculo: Limites, Derivadas e Integrais
-
- Demonstrar função hiperbólica
por samra » Sáb Out 06, 2012 15:41
- 3 Respostas
- 2431 Exibições
- Última mensagem por MarceloFantini

Sáb Out 06, 2012 18:15
Cálculo: Limites, Derivadas e Integrais
-
- [Desigualdade triangular] Demonstrar por absurdo
por Aliocha Karamazov » Qua Set 28, 2011 01:07
- 1 Respostas
- 1644 Exibições
- Última mensagem por LuizAquino

Qua Set 28, 2011 17:57
Álgebra Elementar
-
- Demonstrar que a função f é igual a uma certa série
por fff » Seg Jan 05, 2015 17:15
- 4 Respostas
- 4326 Exibições
- Última mensagem por fff

Qua Jan 07, 2015 18:14
Sequências
-
- [Teorema do Valor Médio] Demonstrar desigualdade
por Brunorp » Qua Abr 06, 2016 23:07
- 1 Respostas
- 1266 Exibições
- Última mensagem por adauto martins

Sex Abr 08, 2016 11:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.