• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Função exponencial] com expressão

[Função exponencial] com expressão

Mensagempor paola-carneiro » Sex Abr 06, 2012 16:40

A questão é essa:
(Faap-SP) Resolva em IR: {5}^{10x} - 10.{5}^{5x}-5 = -30

Sei que em função exponencial temos que igualar a base, e depois retirá-lo e resolver os expoentes. Mas nessa expressão, se fatorarmos o 5 e o 10, fica {5}^{1.2} e  {5}^{1.6}, se não me engano. E no caso a expressão fica:

{5}^{10x} - {5}^{1.2}.{5}^{5x}-5 = -{5}^{1.6}
e a partir dai, não sei como resolver a expressão.
ajuuuda?!
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função exponencial] com expressão

Mensagempor MarceloFantini » Sex Abr 06, 2012 19:09

Não, isto não está correto. Não existe igualar bases, veja que em 2^x = 7^x não há sentido em "igualar as bases". O que você diz é sim quando temos exponenciais de mesma base, não que igualamos. Neste caso, para que sejam iguais, deve-se ocorrer que os expoentes são os mesmos devido ao fato que a função exponencial é injetora.

Esta questão é uma das tradicionais mudanças de variável. É importante lembrar a propriedade fundamental da função exponencial de que ela nunca se anula, ou seja, a^x \neq 0 SEMPRE, para todo a>0. Perceba que 5^{10x} = (5^{5x})^2. Então faça t=5^{5x}. A equação toma a forma

5^{10x} - 10 \cdot 5^{5x} -5 = -30 \implies (5^{5x})^2 - 10 \cdot (5^{5x}) -5 = -30 \implies

\implies (t)^2 -10 \cdot t -5 = -30.

Temos agora uma equação do segundo grau em t. Tente prosseguir e mostre seus passos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Função exponencial] com expressão

Mensagempor paola-carneiro » Sáb Abr 07, 2012 15:40

Resolvendo a equação, o delta eu encontrei zero. E o x ficaria 5.
Porém, a resposta final do livro é \frac{1}{5}
Estou fazendo algo errado?
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Função exponencial] com expressão

Mensagempor MarceloFantini » Sáb Abr 07, 2012 17:30

Você encontra que t = 5, certo? Mas lá no começo dissemos que t = 5^{5x}, daí 5^{5x} = 5 e 5x=1, logo x = \frac{1}{5}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Função exponencial] com expressão

Mensagempor paola-carneiro » Sáb Abr 07, 2012 17:32

Entendi! obrigada :D
paola-carneiro
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Abr 05, 2012 15:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?