• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função injetora

Função injetora

Mensagempor Pri Ferreira » Qua Nov 09, 2011 20:52

Podem me ajudar??? Nessa questão??
Dados os cojuntos A={1,2,3} e B={4,5,6,7,8} o número de funções injetoras de A em B que podem ser definidasé:
a) 60 b)120 c)90 d)30 e) 15
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Função injetora

Mensagempor LuizAquino » Qui Nov 10, 2011 20:19

Pri Ferreira escreveu:Dados os cojuntos A={1,2,3} e B={4,5,6,7,8} o número de funções injetoras de A em B que podem ser definidas é:


Tome o número 1 em A. Podemos associar a ele algum dos 5 elementos de B. O elemento de B que for escolhido, não poderá mais estar associado a outro elemento de A, pois a função deve ser injetora. Dessa maneira, sobrarão 4 elementos em B que ainda podem ser associados.

Tome agora o número 2 em A. Podemos associar a ele algum dos 4 elementos restantes em B, sendo que depois dessa associação irão restar apenas 3 elementos em B que ainda podem ser associados.

Por fim, tome o número 3 em A. Podemos associar a ele algum dos 3 elementos restantes em B.

Dessa maneira, pelo princípio multiplicativo, podemos ter ao todo 5*4*3 = 60 possíveis funções injetoras de A para B.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.