• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo de uma parabola de uma função do 2º grau

Estudo de uma parabola de uma função do 2º grau

Mensagempor gomusalie » Qui Out 27, 2011 15:53

O vertice da parabola y= ax2 + bx + c e o ponto (-2,3). Sabendo que 5 e a ordenada onde a curva corta o eixo vertical, podemos afirmar que
(A) a>1, b<1 e c<4
(B) a>2, b>3 e c>4
(C) a<1, b<1 e c>4
(D) a<1, b>1 e c>4
(E) a<1, b<1 e c<4
________________________________________________________________________________________________
Bom, para mim, só falta o valor do b. Olha como eu fiz:
Bom, Tracei o grafico, e marquei os pontos (-2,3) e deu no quarto quadrante. Bom, 5 é o valor de "c" pois é o valor em que corta o eixo de y, certo? com isso ele cortando o y num valor positivo de 5, então para ser uma função, a lógica é que a concavidade é voltada para baixo, então "a" é negativo, ou seja a<1. Agora o "c" --> Como o valor que corta o eixo y é 5, eu acho que o "c" é 5, portanto c>4. Agora eu fico na duvida de como achar o "b". Obg e aguardo resposta!
gomusalie
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Out 27, 2011 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Estudo de uma parabola de uma função do 2º grau

Mensagempor angieluis » Qui Out 27, 2011 19:14

Uma outra forma de apresentar uma parabola (função quadratica) é:
y=a{(x-h)}^{2}+k em que (h,k) são as coordenadas do vertice da parabola.
assim temos:
y=a{(x-(-2))}^{2}+3
y=a({x}^{2}+4x+4)+3
y=a{x}^{2}+4ax+4a+3(1)
no ponto (0,5) temos, substituindo x e y:
5=4a+3
a=0,5
voltando a (1) e substituindo agora a temos:
y=0,5{x}^{2}+2x+5 onde está muito claro os valores de a, b e c.
Resposta: D
angieluis
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Out 27, 2011 18:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?