• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Real

Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 11:39

Considere a função real f definida por f(x) = 3 + {2}^{x-1}, sendo g de A a sua inversa. Considere também as seguintes afirmativas. Verifique as falsas e as verdadeiras, justificando sua resposta.

a) a imagem de f é A.
b) o gráfico de f está acima da reta y = 4
c) g(\frac{11}{2}) = {Log}_{2}5
d) Se f (h(x)) = 3 + 2x então h(¼) = 0
e) O gráfico da função g intercepta o eixo x no ponto (1,0)
f) O conjunto solução da inequação f(2x+1) < 1 + 3 . {2}^{x} é o intervalo ]0,1[

Se faz necessario as soluções de cada resposta.

A primeira eu fiz e sei que é Falsa pois A não pode ser imagem de f, pois se A é a função então A é o dominio então a imagem será B.

A \rightarrow B

Obrigado, a todos!!!
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 13:47

Note que o maior domínio possível de f é \mathbb{R}, enquanto que sua imagem é (3, + \infty). Portanto, sua inversa será definida: g: \, (3, + \infty) \to \mathbb{R}, portanto a primeira é falsa. Seu argumento não é válido pois é possível ter uma função com domínio e imagem iguais. Vamos encontrar a função inversa:

f(x) = 3 + 2^{x-1} \implies f(x) -3 = 2^{x-1} \implies 2(f(x) -3) = 2^x
\implies x = \log_2 2(f(x) - 3) = 1 + \log_2 (f(x) -3)

Verifique as afirmações. A letra b é falsa, pois tome x=0, temos f(0) = 3 + 2^{0-1} = 3 + 2^{-1} = 3,5 < 4 e portanto o gráfico de f não está acima da reta y=4 (existem outros pontos, foi para ilustrar, mesmo porque o conjunto imagem demonstra que há infinitos pontos abaixo da reta).

Tente fazer as outras letras.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 16:48

Mas no caso da letra B se eu tomasse o X=2, eu poderia utilizar o X sendo < que 2?
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 16:50

Note que x=2 não é contra-exemplo, uma vez que f(2) = 3+2^{2-1} = 3+2 = 5 e está acima da reta y=4. Mesmo tomando x<2, o seu exemplo não garante que existam pontos do gráfico abaixo da reta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 17:26

MarceloFantini escreveu:Note que x=2 não é contra-exemplo, uma vez que f(2) = 3+2^{2-1} = 3+2 = 5 e está acima da reta y=4. Mesmo tomando x<2, o seu exemplo não garante que existam pontos do gráfico abaixo da reta.


Entendi agora.
Só mais uma coisa poderia me dar um auxilio com essa questão que envolve o logaritmo, pois estou travado nela. As outras da para desenrolar. A letra C


Obrigado!!!
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 17:48

Você tentou substituir x=\frac{11}{2} e ver se o valor é igual ao afirmado na letra C?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Real

Mensagempor jcvalim » Qua Ago 24, 2011 18:03

MarceloFantini escreveu:Você tentou substituir x=\frac{11}{2} e ver se o valor é igual ao afirmado na letra C?


Então mas a função e f(x) e na afirmação ele esta utilizando g(x).
jcvalim
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 24, 2011 11:11
Formação Escolar: SUPLETIVO
Área/Curso: Administração
Andamento: cursando

Re: Função Real

Mensagempor MarceloFantini » Qua Ago 24, 2011 18:09

Eu já te dei a expressão para a inversa, investigue o outro post.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D