Mensagempor MarinheiroMat » Qua Mai 18, 2011 13:57
Uma fabrica de frascos destinados a produtos de conserva pretende o seguinte:
-> construir uma embalagem cilindrica com capacidade de 48? cm^3
-> A base inferior do cilindro do mesmo material da superficie lateral, que custa 2 euros por m^2
-> a base superior do cilindro de um material mais caro, que custa 3 euros por m^2
Supondo que não haverá perdas de material:
2.1 verifique que o custo de cada embalagem e dado, em euros, por:
C(r) = 0,0005?r^2 + 0,0192?/r sendo r o raio da base em cm.
2.2 Determine, com aproximação ás centesimas a altura e o raio da base do cilindro de modo a minimizar o custo do material gasto.
--------------------------------------------------------------------------------
Na primeira pergunta não sei como responder ja fiz o grafico na maquina calculadora mas acho que não é por ai
Na segunda pergunta não sei mesmo como fazer
Dêem me dicas para como fazer.
sfffffffffff
Alguem consegue chegar lá eu não


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)