Mensagempor MarinheiroMat » Qua Mai 18, 2011 13:57
Uma fabrica de frascos destinados a produtos de conserva pretende o seguinte:
-> construir uma embalagem cilindrica com capacidade de 48? cm^3
-> A base inferior do cilindro do mesmo material da superficie lateral, que custa 2 euros por m^2
-> a base superior do cilindro de um material mais caro, que custa 3 euros por m^2
Supondo que não haverá perdas de material:
2.1 verifique que o custo de cada embalagem e dado, em euros, por:
C(r) = 0,0005?r^2 + 0,0192?/r sendo r o raio da base em cm.
2.2 Determine, com aproximação ás centesimas a altura e o raio da base do cilindro de modo a minimizar o custo do material gasto.
--------------------------------------------------------------------------------
Na primeira pergunta não sei como responder ja fiz o grafico na maquina calculadora mas acho que não é por ai
Na segunda pergunta não sei mesmo como fazer
Dêem me dicas para como fazer.
sfffffffffff
Alguem consegue chegar lá eu não


em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.