• Anúncio Global
    Respostas
    Exibições
    Última mensagem

prova de matemat

prova de matemat

Mensagempor wandersonwfs » Qua Jan 19, 2011 23:08

boa noite

tem uma prova de matematica e não consegui resolver uma questao, esta questao estou enviando em anexo se alguem puder me ajudar fico grato...

obrigado
Anexos
DSC00203.JPG
wandersonwfs
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jan 19, 2011 22:20
Formação Escolar: GRADUAÇÃO
Área/Curso: analise e desenvolvimento de sistemas
Andamento: cursando

Re: prova de matemat

Mensagempor Elcioschin » Qui Jan 20, 2011 11:33

Não dá para ler tudo.
Porque você não digita?
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: prova de matemat

Mensagempor wandersonwfs » Qui Jan 20, 2011 13:14

Boa Tarde,

Eu so preciso resolver esta questão nro 3
wandersonwfs
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jan 19, 2011 22:20
Formação Escolar: GRADUAÇÃO
Área/Curso: analise e desenvolvimento de sistemas
Andamento: cursando

Re: prova de matemat

Mensagempor Renato_RJ » Qui Jan 20, 2011 14:53

Amigão, infelizmente não dá para saber qual é o limite inferior (me parece um 3), por isso farei a integral usando como limite inferior "a" e limite superior "b", então basta substituir, ok ?!

Vamos lá...

\int_{a}^b ( \frac{-3}{5} \cdot x^4 + 16 \cdot x^2 - 3)dx

A integral da soma, é a soma das integrais, logo:

\int_{a}^b \frac{-3}{5} \cdot x^4 dx + \int_{a}^b 16 \cdot x^2 dx - \int_{a}^b 3 dx

Colocando as constantes para fora da integral teremos:

\frac{-3}{5} \int_{a}^b x^4 dx + 16 \int_{a}^b x^2 dx - 3 \int_{a}^b dx

Agora podemos resolver as integrais:

\frac{-3}{5} \cdot \frac{1}{5} \cdot x^5 + 16 \cdot \frac{1}{3} x^3 - 3 \cdot x

Aplicando os limites, teremos:

\frac{-3}{25} \cdot (b^5 - a^5) + \frac{16}{3} \cdot (b^3 - a^3) - 3 \cdot (b - a)

Agora basta substituir a e b pelos seus valores e fazer as contas...

Espero ter ajudado.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: prova de matemat

Mensagempor wandersonwfs » Qui Jan 20, 2011 18:27

Boa boite Renato,


Imprimir o resultado que voce me passaou para terminar de resolver mas não estou conseguingo, voce pode fazer por mim.

Fiquei 15 anos longe da escola e agora que voltei para faculdade me aparece um problemão deste ai fiquei doido.
wandersonwfs
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jan 19, 2011 22:20
Formação Escolar: GRADUAÇÃO
Área/Curso: analise e desenvolvimento de sistemas
Andamento: cursando

Re: prova de matemat

Mensagempor Renato_RJ » Qui Jan 20, 2011 20:50

Boa noite Wander...

Eu já te dei a resposta, basta colocar o 8 onde está a letra b e o limite inferior (que eu não consigo ler na foto) no lugar da letra a e fazer as contas...

Se, mesmo assim, ainda tiver problemas, posta quais são os limites da integral.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?