• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução Forte

Indução Forte

Mensagempor fenixxx » Seg Ago 13, 2012 14:01

Estou tentando entender indução matematica, mas travei também nessa questão de indução Forte, alguem pode me ajudar ?


Seja a sequência a1, a2, a3, . . . definida como:
a1 = 1, a2 = 3
A_{k} = A_{k-2}+2a_{k-1} para todos inteiros k >=3
Mostre usando Indução Forte que a_{n} é ?mpar para todo n natural.
fenixxx
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Fev 28, 2012 21:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: Indução Forte

Mensagempor Russman » Seg Ago 13, 2012 15:38

Por indução eu não sei...mas se te ajuda a Lei dessa sequência é:
A(k)=\frac{1}{2}\left [ (1+\sqrt{2})^k + (1-\sqrt{2})^k \right ]=\sum_{j=0}^{k}\binom{k}{2m}2^m.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Indução Forte

Mensagempor fenixxx » Seg Ago 13, 2012 15:43

Tem que ser por indução forte.
fenixxx
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Fev 28, 2012 21:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.