• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 2°grau

Equação do 2°grau

Mensagempor karen » Sáb Mai 05, 2012 15:53

1+\sqrt[2]{x+2}=\sqrt[2]{2x+2}

Eu resolvi da seguinte forma:

1) Elevei tudo ao quadrado para eliminar a raiz
1+x+2=2x+2
x=1

Na resposta do meu livro está x=7

O que eu fiz de errado?
karen
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Mai 03, 2012 20:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrônica
Andamento: formado

Re: Equação do 2°grau

Mensagempor DanielFerreira » Sáb Mai 05, 2012 20:42

karen escreveu:1+\sqrt[2]{x+2}=\sqrt[2]{2x+2}

Eu resolvi da seguinte forma:

1) Elevei tudo ao quadrado para eliminar a raiz
1+x+2=2x+2
x=1

Na resposta do meu livro está x=7

O que eu fiz de errado?

Karen,
lembre-se que: (a + b)² = a² + 2.a.b + b²
1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}

(1 + \sqrt[]{x + 2})^2 = (\sqrt[]{2x + 2})^2

1 + 2\sqrt[]{x + 2} + x + 2 = 2x + 2

2\sqrt[]{x + 2} = x - 1

(2\sqrt[]{x + 2})^2 = (x - 1)^2

4(x + 2) = x^2 - 2x + 1

x^2 - 6x - 7 = 0

(x - 7)(x + 1) = 0

VERIFICANDO QUANDO x = - 1:
1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}

1 + \sqrt[]{- 1 + 2} = \sqrt[]{- 2 + 2}

1 + \sqrt[]{1} = \sqrt[]{0}

2 = 0
Falsa!!


VERIFICANDO QUANDO x = 7:
1 + \sqrt[]{x + 2} = \sqrt[]{2x + 2}

1 + \sqrt[]{7 + 2} = \sqrt[]{14 + 2}

1 + \sqrt[]{9} = \sqrt[]{16}

1 + 3 = 4
Verdadeira!!

Portanto,
x = 7
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}