• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade em Álgebra

Dificuldade em Álgebra

Mensagempor Cleyson007 » Qua Mar 07, 2012 17:27

Boa tarde amigos do Ajuda Matemática!

Nossa, estou com muita dificuldade em minhas aulas de Álgebra... Como resolver exercícios do tipo que seguem?

1°) Verifique que: 1+i\,\,{\leq}_{L}\,\,2+i

2°) Verifique que: 2\,\,{\leq}_{L}\,\,3

Alguém pode me ajudar?

Fico no aguardo.
Editado pela última vez por Cleyson007 em Qua Mar 07, 2012 20:51, em um total de 1 vez.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Dificuldade em Álgebra

Mensagempor MarceloFantini » Qua Mar 07, 2012 18:54

Cleyson, você poderia por favor colocar o enunciado completo? O que é \leq_L? O que é i? A segunda linha é uma conclusão da primeira? Está confuso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dificuldade em Álgebra

Mensagempor Cleyson007 » Qua Mar 07, 2012 20:50

Boa noite Marcelo!

O enunciado está completo!

O {\leq}_{L} significa o estudo lexicográfico no conjunto dos complexos; o i é a parte imaginária.

Cada linha é um exercício (editei para ficilitar a compreensão).
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Dificuldade em Álgebra

Mensagempor MarceloFantini » Qua Mar 07, 2012 21:05

Pelo enunciado, estou supondo que a ordem definida seja (a,b) \leq_L (c,b) se a \leq c. Desta forma parece tranquilo, não? No segundo caso, teremos (2,0) \leq_L (3,0), logo 2 \leq_L 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?