• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equacao

equacao

Mensagempor clabonfim » Seg Jan 16, 2012 01:22

Diz-se que um número inteiro positivo x é um número perfeito, quando é a soma de todos
os seus divisores positivos, exceto ele próprio. Por exemplo, 28 é um número perfeito, pois
28 = 1 + 2 + 4 + 7 + 14. A última proposição do nono livro dos Elementos de Euclides prova
que se n é um inteiro positivo, tal que 2^n ?1 é um número primo, então 2^(n–1)(2^n ?1) é um número
perfeito. Euler provou que todo número perfeito par tem essa forma, mas ainda não são
conhecidos números perfeitos ímpares.
O menor elemento do conjunto P = {n ? / 2^(n?1)(2^n ?1) > 1128}, para o qual 2n–1(2n?1) é um número
perfeito, é
A) 5 C) 7 E) 9
B) 6 D) 8
clabonfim
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Ago 08, 2011 04:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: equacao

Mensagempor fraol » Seg Jan 16, 2012 21:37

Não entendi, ao certo, as expressões contidas no trecho:

O menor elemento do conjunto P = {n ? / 2^(n?1)(2^n ?1) > 1128}, para o qual 2n–1(2n?1) é um número
perfeito, é


Você tem como melhorar o texto usando Latex, quem sabe usando o Editor de Fórmulas?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: equacao

Mensagempor fraol » Seg Jan 16, 2012 22:59

Revendo um pouco o assunto números perfeitos, acredito que a expressão seja:

O menor elemento do conjunto P = \{ n \in N / 2^{n-1}(2^{n}-1) > 1128 \}, para o qual 2^{n-1}(2^{n}-1) é um número perfeito, é


Se assim o for, usando a informação dada: "se (2^{n}-1) é um número primo, então 2^{n-1}(2^{n}-1) é um número perfeito" e o fato de que "se (2^{n}-1) é um número primo, então n também é primo", concluí-se que n \in \{ 2, 3, 5, 7, 11, 13, ... \}.

Daqui em diante, ou tentamos isolar o n na expressão 2^{n-1}(2^{n}-1) > 1128 via algum recurso algébrico ( tentei mas não cheguei a bom termo ), ou testamos alguns números primos posto que 1128 é um número relativamente pequeno e não será difícil encontrar o tal n.

Outra alternativa, que não é o caso em um teste ou prova, mas pode ser usado em caso de pesquisa é recorrer a uma tabela de números perfeitos conhecidos, ou mesmo aplicar a fórmula em uma planilha de cálculo.


Se algum outro colega tiver alguma outra forma, manda pra cá.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: equacao

Mensagempor Arkanus Darondra » Seg Jan 16, 2012 23:08

fraol escreveu:Se algum outro colega tiver alguma outra forma, manda pra cá.

Boa Noite.
Ele postou a mesma questão aqui e no fórum pir2.
Ela já foi respondida e a resposta é n = 7
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equacao

Mensagempor fraol » Seg Jan 16, 2012 23:31

Obrigado Arkanus!
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}