• Anúncio Global
    Respostas
    Exibições
    Última mensagem

congruência

congruência

Mensagempor hatsurei » Ter Set 13, 2011 11:09

Olá,
Estou estudando sobre congruência e nao consigo entender o assunto e nem resolver a questao abaixo:

Questão 3:
a) Ache o resto na divisão de 2^45 por 7
b) Ache o resto da divisão de 11^10 por 100
c) Mostre que 2^20-1 é divisível por 41
d) Sabendo que 402= 654(mod m), determine os possíveis valores de m.
e) Mostre que 45^10 é divisível por 5

Por favor, se alguem puder resolver e deixar o calculo para estudo para mim eu agradeço e tambem se soube de algum material que me ajude a entender o assunto ficaria muito grato mesmo.
hatsurei
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 13, 2011 10:55
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: congruência

Mensagempor ronaldoh » Qui Jan 05, 2012 17:26

Questão 3:
a) Ache o resto na divisão de 2^45 por 7
Ora, se 2^3\equiv 1 mod 7, então 2^3^15 \equiv 1^15 mod 7.
Portanto o resto é 1^15, ou simplesmente 1.

b)Resolução:
1110 – 1 = (11 – 1)(119 + 118 + 117 + ... + 112 + 11 + 1) => 11^10 – 1 = 10.(119 + 118 + 117 + ... + 112 + 11 + 1)
Basta provar que (119 + 118 + 117 + ... + 112 + 11 + 1) é divisível por 10.
=>11 \equiv 1 (mod. 10) => 1 \equiv 11 \equiv 112 \equiv 113 \equiv 114 \equiv ... \equiv 118 \equiv 119 \equiv 1 (mod. 10)
Somando temos: 119 + 118 + 117 + ... + 112 + 11 + 1 º 1 + 1 + 1 + ... + 1 (mod. 10) =>
119 + 118 + 117 + ... + 112 + 11 + 1 \equiv10 (mod. 10) => 119 + 118 + 117 + ... + 112 + 11 + 1 \equiv 0 (mod. 10)
portanto o resto é 0.

c) 27 = 128 = 3.41 + 5 => 27 \equiv 5 (mod. 41) => 2^3.2^7 \equiv 2^3.5 (mod. 41) => 210^\equiv 40 (mod. 41) =>
2^10 \equiv – 1 (mod. 41) => (210)^^2 \equiv (– 1)2 (mod. 41) => 220^\equiv 1 (mod. 41) \equiv 41 | 220 – 1


e) se 45 \equiv 0 mod 5, então 45^10 \equiv 5^10 mod 5. Mas evidentemente 5 | 5^10
ronaldoh
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 05, 2012 16:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.