• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos Numéricos

Conjuntos Numéricos

Mensagempor Abelardo » Qui Mar 10, 2011 13:45

45. Considere x, y e z números naturais. Na divisão de x por y obtém-se quociente z e resto 8. Sabe-se que a representação decimal de \frac{x}{y} é a dízima periódica 7,363636... Então, o valor de x + y + z é:

a)190
b)193
c)191
d)192


Só encontro 190 como resposta, mas a resposta é 191! Alguma luz, não quero que resolvam para mim, quero alguma dica.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Renato_RJ » Qui Mar 10, 2011 15:03

Abelardo, vamos ver esse problema...

\frac{x}{y} = 7,36363636... \Rightarrow \, \frac{x}{y} = 7 + \frac{36}{99}

Sabemos que:
x = z \cdot y + 8 \Rightarrow \, \frac{x}{y} = z + \frac{8}{y}

Agora, faça a substituição e veja o resultado, é 191 mesmo...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Abelardo » Sex Mar 11, 2011 22:27

Caramba, deixei a geratriz na forma de fração irredutível e nem me toquei que poderia destrinchá-la !! Valeu mesmo, consegui.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Renato_RJ » Sáb Mar 12, 2011 00:48

:y:
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}