• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aritmética Elementar

Aritmética Elementar

Mensagempor Abelardo » Seg Mar 07, 2011 00:36

(PUC - RJ) Para a, b e c distintos, o valor da expressão \frac{1}{(a-b)(a-c)} + \frac{1}{(b-a)(b-c)} +\frac{1}{(c-a)(c-b)} é:
a) a + b + c
b) sempre zero
c) a.b.c
d) 3(a + b + c)
e) \frac{1}{a+b+c}
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Aritmética Elementar

Mensagempor Renato_RJ » Seg Mar 07, 2011 16:18

Abelardo, eu fiz o mmc e depois simplifiquei a expressão e cheguei no seguinte :

\frac{c -b + a - c + b - a}{(a - b) \cdot (b - c) \cdot (c - a)}

Essa expressão resulta em zero, por isso eu acho que a resposta seja a letra b..
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Aritmética Elementar

Mensagempor Abelardo » Seg Mar 07, 2011 18:34

vc considerou que (a - b) é igual a (b - a)? não consegui simplificá-lo..
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Aritmética Elementar

Mensagempor Renato_RJ » Seg Mar 07, 2011 19:00

Abelardo escreveu:vc considerou que (a - b) é igual a (b - a)? não consegui simplificá-lo..


Não os considerei iguais, apenas tive um trabalho gigantesco em desenvolver todo o polinômio e cancelar os termos simétricos, depois simplifiquei o que sobrou...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Aritmética Elementar

Mensagempor LuizAquino » Ter Mar 08, 2011 10:15

Sugestão
A questão fica extremamente simples se primeiro arrumarmos os denominadores antes de tirar o m.m.c.:
\frac{1}{(a-b)(a-c)} + \frac{1}{(b-a)(b-c)} +\frac{1}{(c-a)(c-b)} =

= \frac{1}{(a-b)(a-c)} + \frac{1}{[(-1)(a-b)][(-1)(c-b)]} +\frac{1}{[(-1)(a-c)](c-b)}

= \frac{1}{(a-b)(a-c)} + \frac{1}{(a-b)(c-b)} - \frac{1}{(a-c)(c-b)}

= \frac{(c-b) + (a-c) - (a-b)}{(a-b)(a-c)(c-b)} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Aritmética Elementar

Mensagempor Abelardo » Ter Mar 08, 2011 12:02

Que técnica legal essa, nunca pensei em multiplicar por -1! Mais uma técnica. Obrigado Aquino
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Aritmética Elementar

Mensagempor Abelardo » Dom Mai 08, 2011 16:37

Desculpe-me profº Luiz Aquino por revirar uma questão antiga, mas fiquei com uma dúvida (Em outro fórum um amigo postou a mesma questão e apresentei a sua resolução e dei todos os créditos ao senhor, é óbvio).
Poderíamos dar valores para ''a'',''b'' e ''c'' ? Se sim, poderiam ser, respectivamente, 5, 4 e 3?

Não sei se posso fazer essa ''substituição'', mas substituindo mesmo assim encontrei valores diferentes -->

\frac{1}{(a-b)(a-c)} + \frac{1}{(b-a)(b-c)} +\frac{1}{(c-a)(c-b)} (encontrei zero)

\frac{1}{(a-b)(a-c)} + \frac{1}{(a-b)(c-b)} - \frac{1}{(a-c)(c-b)} (encontrei - 1)
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Aritmética Elementar

Mensagempor LuizAquino » Dom Mai 08, 2011 17:29

Você pode substituir a, b e c por qualquer valor real, desde que eles sejam todos distintos.

Para a=5, b=4 e c=3 temos:

(i) \frac{1}{(5-4)(5-3)} + \frac{1}{(4-5)(4-3)} +\frac{1}{(3-5)(3-4)} = \frac{1}{(1)(2)} + \frac{1}{(-1)(1)} +\frac{1}{(-2)(-1)} = \frac{1}{2} - 1 +\frac{1}{2} = 0

(ii) \frac{1}{(5-4)(5-3)} + \frac{1}{(5-4)(3-4)} - \frac{1}{(5-3)(3-4)} = \frac{1}{(1)(2)} + \frac{1}{(1)(-1)} - \frac{1}{(2)(-1)} = \frac{1}{2} - 1 + \frac{1}{2} = 0

Em ambos os casos, como era de se esperar, o valor final é 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D