por lucas7 » Qui Fev 17, 2011 20:55
Boa Noite! Preciso de ajuda:
17)

como que eu igualo esses denominadores? Eu não entendi como faz o mmc.
Outro exemplo:
19)

Preciso de uma solução numa maneira bem explicativa, passo a passo, para eu poder entender.
Obrigado.
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
-
lucas7
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Ter Fev 15, 2011 19:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por Cleyson007 » Qui Fev 17, 2011 21:27
Boa noite Lucas!
17)

O procedimento é simples: O m.m.c é (x+y)(x-y) (Resolve dividindo o mmc pelo denominador, o resultado deverá ser multiplicado pelo numerador).
19) Repare que (1 - 3x) (1 + 3x) = (1 - 9x²) --> Logo o m.m.c é (1 - 9x²).

(Aqui o procedimento adotado é o mesmo do exercício 17)
Agora tente desenvolver os parênteses sozinho, ok? Surgindo dúvidas comunique.
Abraços.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Cleyson007 » Qui Fev 17, 2011 21:30
Boa noite Lucas!
17)

O procedimento é simples: O m.m.c é (x+y)(x-y) (Resolve dividindo o mmc pelo denominador, o resultado deverá ser multiplicado pelo numerador).
Resolvendo os parênteses do numerador:

19) Repare que (1 - 3x) (1 + 3x) = (1 - 9x²) --> Logo o m.m.c é (1 - 9x²).

(Aqui o procedimento adotado é o mesmo do exercício 17)
Agora tente desenvolver os parênteses sozinho, ok? Surgindo dúvidas comunique.
Abraços.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por lucas7 » Qui Fev 17, 2011 21:42
Tentei, mas acho que não deu certo:
17)

=

=

.... Segundo o gabarito seria

Eu cortei as multiplicações para simplificar, e depois somei onde tinha o sinal de mais, qual o erro?!
ps: cheguei ao resultado certo da 17, sem simplificar ela. por que não dá pra cortar?
19)

=

=

outra tentativa, sem simplificar inicialmente:

=

ps: consegui, o sinal negativo antes dos parentes altera a positividade de todos os números dentro do parênteses.
Segundo o gabarito:

Obrigado
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
-
lucas7
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Ter Fev 15, 2011 19:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por lucas7 » Sex Fev 18, 2011 00:12
Outra:
O gabarito diz que a resposta é 0. Qual o erro?
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
-
lucas7
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Ter Fev 15, 2011 19:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por Cleyson007 » Sex Fev 18, 2011 18:23
Boa tarde Lucas!
Respondendo seu último exercício postado:

Vou resolver passo-a-passo para você entender melhor o que acontece. Veja:

Desenvolvendo o numerador e o denominador, temos:


Somando os termos do numerador perceberá que dará 0, logo:

Comente qualquer dúvida
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Frações Algébricas] Como simplifico essa fração?
por Kah » Qua Mar 18, 2015 17:44
- 1 Respostas
- 1986 Exibições
- Última mensagem por Russman

Qua Mar 18, 2015 22:38
Álgebra Elementar
-
- frações algebricas
por tamirosa » Qui Out 29, 2009 20:11
- 1 Respostas
- 3169 Exibições
- Última mensagem por Molina

Sex Out 30, 2009 11:37
Álgebra Elementar
-
- Frações Algébricas
por LuizCarlos » Dom Ago 07, 2011 21:45
- 5 Respostas
- 2713 Exibições
- Última mensagem por MarceloFantini

Seg Ago 08, 2011 02:06
Álgebra Elementar
-
- Frações Algébricas
por LuizCarlos » Qui Abr 19, 2012 14:33
- 4 Respostas
- 1991 Exibições
- Última mensagem por LuizCarlos

Qui Abr 19, 2012 17:59
Álgebra Elementar
-
- Frações Algébricas Ajudem-me!
por Jansen » Seg Ago 31, 2009 23:32
- 0 Respostas
- 1610 Exibições
- Última mensagem por Jansen

Seg Ago 31, 2009 23:32
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.