José,
![\sqrt[]{10+\sqrt[]{10}}\times \sqrt[]{10-\sqrt[]{10}}\not=\sqrt[]{10}+\sqrt[4]{10}\times \sqrt[]{10}- \sqrt[4]{10} \sqrt[]{10+\sqrt[]{10}}\times \sqrt[]{10-\sqrt[]{10}}\not=\sqrt[]{10}+\sqrt[4]{10}\times \sqrt[]{10}- \sqrt[4]{10}](/latexrender/pictures/ec672b806b0de34b7c28553c76309e06.png)
e isto pode ser visto, sei lá, com uma calculadora, se quiser (usei o Google, também dá

)
Mas, o que eu quero dizer é que você não pode dizer que
![\sqrt{10\pm\sqrt{10}}=\sqrt{10}\pm\sqrt[4]{10} \sqrt{10\pm\sqrt{10}}=\sqrt{10}\pm\sqrt[4]{10}](/latexrender/pictures/afb5eb6200a6d950d82a7f5c5c1774cd.png)
. Isto só pode ser feito se você tiver, no lugar da adição (ou subtração), uma multiplicação, pois dai sim pode usar as propriedades das potências (afinal, a raiz não é mais do que uma potência fracionária). Por exemplo:
![\sqrt{10\cdot\sqrt{10}}=(10\cdot10^{\frac{1}{2}})^{\frac{1}{2}}=10^{\frac{1}{2}}\cdot10^{\frac{1}{4}}=\sqrt{10}\cdot\sqrt[4]{10} \sqrt{10\cdot\sqrt{10}}=(10\cdot10^{\frac{1}{2}})^{\frac{1}{2}}=10^{\frac{1}{2}}\cdot10^{\frac{1}{4}}=\sqrt{10}\cdot\sqrt[4]{10}](/latexrender/pictures/4310dc22fd75df4db9b5e965784ce8bf.png)
.
Para resolver este problema, você deve usar uma das propriedades dos "Produtos Notáveis" que diz que

, assim:
![\sqrt[]{10+\sqrt[]{10}}\times \sqrt[]{10-\sqrt[]{10}}=\sqrt{(10+\sqrt{10})(10-\sqrt{10})}} \sqrt[]{10+\sqrt[]{10}}\times \sqrt[]{10-\sqrt[]{10}}=\sqrt{(10+\sqrt{10})(10-\sqrt{10})}}](/latexrender/pictures/464a82ecd7af4a5c22f4fede5fb4ff89.png)

(observe que

).