• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Raiz Cúbica] Diferença de Raízes Cúbicas

[Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor CJunior » Sex Fev 28, 2014 21:31

( IME 1991) Mostre que \sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}} é um número racional.
CJunior
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Jan 26, 2014 13:18
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: [Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor young_jedi » Sáb Mar 01, 2014 13:40

x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}

x^3=\left(\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}\right)^3

x^3=3+\sqrt[2]{9+\frac{125}{27}}-3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}^2.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}+3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}^2+3-\sqrt[2]{9+\frac{125}{27}}

x^3=6-3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}^2.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}+
3\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}^2

x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right)^2.\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}+3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)^2}

x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\left(-3^2+\sqrt[2]{9+\frac{125}{27}}^2\right)}+3\sqrt[3]{\left(-3^2+\sqrt[2]{9+\frac{125}{27}}^2\right).\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}


x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\left(-9+9+\frac{125}{27}\right)}+3\sqrt[3]{\left(-9+9+\frac{125}{27}\right).\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}

x^3=6-3\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right).\frac{125}{27}}+3\sqrt[3]{\frac{125}{27}.\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}

x^3=6-3.\frac{5}{3}\sqrt[3]{\left(3+\sqrt[2]{9+\frac{125}{27}}\right)}+3.\frac{5}{3}\sqrt[3]{\left(-3+\sqrt[2]{9+\frac{125}{27}}\right)}

x^3=6-5\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}+5\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}

x^3=6-5\left(\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}\right)

x^3=6-5x

x^3+5x-6=0

é facil ver que a raiz real dessa equação é 1

portanto

x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}}=1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor Man Utd » Ter Mar 04, 2014 15:27

CJunior escreveu:( IME 1991) Mostre que \sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt[2]{9+\frac{125}{27}}} é um número racional.



x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}-\sqrt[3]{-\left(3-\sqrt[2]{9+\frac{125}{27}}\right)}


x=\sqrt[3]{3+\sqrt[2]{9+\frac{125}{27}}}+\sqrt[3]{3-\sqrt[2]{9+\frac{125}{27}}}


Perceba que agora está no "jeito" da fórmula de cardano : x=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
que serve para resolver equações cúbicas reduzidas do tipo: x^{3}+px+q=0.Enfim comparando-a com a fórmula obtemos : q=-6 \;\; \wedge \;\; p=5,segue que a equação é :

x^3+5x-6=0


que já sabemos que a raiz real é \boxed{\boxed{1}}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Raiz Cúbica] Diferença de Raízes Cúbicas

Mensagempor young_jedi » Ter Mar 04, 2014 22:01

fórmula de cardano,

muito bem observado Man Utd,
desse jeito fica mais simples valeu ai!!!!
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}