por laura_biscaro » Qua Mar 13, 2013 00:11
Se
![\sqrt[2]{2} \sqrt[2]{2}](/latexrender/pictures/a8f8ae3924f6c44624745ca9e588cae3.png)
+
![\sqrt[2]{3} \sqrt[2]{3}](/latexrender/pictures/77529b271d4ed2ab8ca1f0755594aa28.png)
=
![\sqrt[2]{5+2\sqrt[2]{n}} \sqrt[2]{5+2\sqrt[2]{n}}](/latexrender/pictures/f7958d1a217d7cfc89902baea6495d8c.png)
, o valor de n é:
a)0
b)2
c)3
d)5
e)6
-
laura_biscaro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Fev 18, 2013 19:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por timoteo » Qua Mar 13, 2013 00:28
Oi.
Eleve os dois membros ao quadrado!
Haverá um multiplicação cruzada.
Espero ter ajudado!
R= e
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
por laura_biscaro » Qua Mar 13, 2013 00:44
Olá!
então, se eu elevasse ao quadrado, a equação ficaria assim:
2+3=5+2
5=5+2
![\sqrt[2]{n} \sqrt[2]{n}](/latexrender/pictures/4bbf52caa33cad8fb05ffe4be0188130.png)
mas, se eu cortasse os dois 5, nao ficaria:
0=2
![\sqrt[2]{n} \sqrt[2]{n}](/latexrender/pictures/4bbf52caa33cad8fb05ffe4be0188130.png)
?
-
laura_biscaro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Fev 18, 2013 19:05
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por timoteo » Qua Mar 13, 2013 00:51
Na realidade a primeira parte da equação tem que ficar assim:
![(\sqrt[]{2} + \sqrt[]{3})^{2} (\sqrt[]{2} + \sqrt[]{3})^{2}](/latexrender/pictures/66967b36feef0a921d517259a9afa22f.png)
=
![(\sqrt[]{2} + \sqrt[]{3}) (\sqrt[]{2} + \sqrt[]{3})](/latexrender/pictures/bd51fcc604f6e9d822f54ea626a09510.png)
![(\sqrt[]{2} + \sqrt[]{3}) (\sqrt[]{2} + \sqrt[]{3})](/latexrender/pictures/bd51fcc604f6e9d822f54ea626a09510.png)
= 5 + 2
![\sqrt[]{6} \sqrt[]{6}](/latexrender/pictures/bd95d60cfbcfe62be13a43e39e60bbdb.png)
.
Continue daí!
-
timoteo
- Colaborador Voluntário

-
- Mensagens: 117
- Registrado em: Ter Fev 14, 2012 07:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bacharel matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida radiciação
por sullivan » Ter Jan 24, 2012 13:41
- 3 Respostas
- 1741 Exibições
- Última mensagem por LuizAquino

Ter Jan 24, 2012 17:00
Álgebra Elementar
-
- Radiciação dúvida!
por LuizCarlos » Ter Mai 15, 2012 18:57
- 3 Respostas
- 2034 Exibições
- Última mensagem por LuizAquino

Sex Mai 18, 2012 13:26
Álgebra Elementar
-
- Radiciação - Dúvida
por Danilo » Qui Ago 09, 2012 22:37
- 2 Respostas
- 1352 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 00:04
Álgebra Elementar
-
- Dúvida - radiciação
por Danilo » Sex Ago 10, 2012 01:53
- 3 Respostas
- 1573 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 11:22
Álgebra Elementar
-
- Dúvida - {radiciação}
por Danilo » Sex Ago 10, 2012 11:34
- 2 Respostas
- 1505 Exibições
- Última mensagem por Danilo

Sex Ago 10, 2012 11:47
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.