• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(U.CAMPINAS-68)Equação

(U.CAMPINAS-68)Equação

Mensagempor flavio2010 » Sáb Jul 10, 2010 20:16

O valor de a para que para que o produto das raízes da equação 2x^4-ax^2+1=0, seja um núumero inteiro é:
a)2
b)V2
c)V2/2
d))-1
e)n.r.a
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor Tom » Sáb Jul 10, 2010 23:57

Tem certeza que é o produto das raízes?
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor flavio2010 » Dom Jul 11, 2010 09:34

Olá Tom.
A questão é de livro do Iezzi, e confere o enunciado.
Um abraço fraterno.
flavio2010
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Qui Jun 10, 2010 22:27
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor Douglasm » Dom Jul 11, 2010 10:50

Se nós considerarmos a equação na forma:

ax^4 + bx^3 + cx^2 + dx + e = 0

As relações de Girard nos dizem que o produto das raízes é dado por:

P = \frac{e}{a} \;\;\mbox{nesse caso em particular:}\;\; P = \frac{1}{2}

Por conta disso, vemos que o produto das raízes não será inteiro, independente do valor de "a" (no problema). A resposta é alternativa e.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (U.CAMPINAS-68)Equação

Mensagempor Tom » Dom Jul 11, 2010 16:06

Ahhh eu não vi que tinha a opção n.r.a. e como era impossivel ser inteira, achei estranho. A análise do Douglas está correta.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.