• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ITA) Determinar No de Raízes Reais

(ITA) Determinar No de Raízes Reais

Mensagempor Carolziiinhaaah » Sáb Jun 19, 2010 11:59

Seja P(x) um polinômio de grau 5, com coeficientes reais,
admitindo 2 e i como raízes. Se P(1)P(-1) < 0, então o número
de raízes reais de P(x) pertencentes ao intervalo ]-1, 1[ é:

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (ITA) Determinar No de Raízes Reais

Mensagempor Douglasm » Sáb Jun 19, 2010 21:25

Olá Carolziiinhaaah. Para resolver esse problema, basta avaliarmos com bastante atenção os dados que temos:

Se 2 e i são raízes:

* -i também é raiz;

* P(x) = a(x-2)(x-i)(x+i)(x-\alpha)(x-\beta)

Podemos simplificar isso para:

P(x) = a(x^3 -2x^2 + x - 2)(x-\alpha)(x-\beta)

Fazendo P(1) e P(-1):

P(1) = -2a(1-\alpha)(1-\beta)

P(-1) = -6a(-1-\alpha)(-1-\beta) = -6a(1+\alpha)(1+\beta)

Observando a condição exposta no enunciado:

P(1).P(-1)\; < \; 0 \; \therefore \; 12a^2(1-{\alpha}^2)(1-{\beta}^2)\; < \; 0

Como 12a^2 é maior que zero, os outros dois fatores devem possuir sinais opostos. Logo:

(1-{\alpha}^2)\;<\;0 \; \therefore \; 1\;<\;|\alpha| \; \therefore \; \alpha\;>\; 1 \; ou \; \alpha\;<\;-1

(1-{\beta}^2)\;>\;0 \; \therefore \; 1\;>\;|\beta| \; \therefore \; -1<\beta\;<\;1

Assim demonstramos que só há uma raiz no intervalo ]-1 , 1[ .

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}