por matheus_frs1 » Ter Fev 10, 2015 11:33
Dadas as equações

e

, sabe-se que uma das raízes da segunda equação e o dobro de uma das raízes da primeira equação. Sendo

, determine

.
Galera, tentei fazer umas loucuras e cheguei em k = 6, mas fiz inúmeros processos. Alguém me explica uma maneira mais fácil?
-
matheus_frs1
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Mar 04, 2014 12:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Eletroeletrônica
- Andamento: cursando
por Cleyson007 » Ter Fev 10, 2015 15:29
Boa tarde Matheus!
Vamos chamar de "m" e "n" as raízes da primeira equação (x²-5x+k= 0)
Chamaremos de "m" e "2n" as raízes da segunda equação (x² -7x +2k = 0)
Temos que:
m + n = 5
m + 2n= 7
Na primeira equação, temos: m = 5 - n
Substituindo na segunda equação: 5 - n + 2n = 7 ---> n = 2
Como m = 5 - n ---> m = 3
k é o produto das raízes
k= (2)(3) = 6
Comente qualquer dúvida
Abraço
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por matheus_frs1 » Qua Fev 11, 2015 00:02
Vlw, Cleyson, vc fez de uma maneira muito mais simples. Eu fiz cada rolo, kkkkkkkkkkkkkk. Muito obrigado
-
matheus_frs1
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Mar 04, 2014 12:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Eletroeletrônica
- Andamento: cursando
por Cleyson007 » Qua Fev 11, 2015 16:58
Olá Matheus, boa tarde!
Foi um prazer ajudar meu amigo
Aproveitando a oportunidade convido-o para que conheça melhor o meu trabalho:
viewtopic.php?f=151&t=13614Qualquer dúvida estou a disposição.
Abraço
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por matheus_frs1 » Qui Fev 12, 2015 12:16
Parabéns pelo trabalho Cleyson.
Agora uma coisa me chamou atenção... vc disse que atende pelo whatsapp e percebi que o DDD é 38 (região do interior de MG).
Que mal lhe pergunte, de qual cidade vc é? Pergunto isso, pq já morei nessa região, precisamente em Montes Claros.
-
matheus_frs1
- Usuário Ativo

-
- Mensagens: 18
- Registrado em: Ter Mar 04, 2014 12:36
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Eletroeletrônica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Eq Dif] Variação dos Parâmetros
por Bruno G Carneiro » Qua Jun 06, 2012 16:08
- 1 Respostas
- 1041 Exibições
- Última mensagem por nietzsche

Qua Jun 06, 2012 22:03
Cálculo: Limites, Derivadas e Integrais
-
- [Eq Dif] Variação dos Parâmetros
por Bruno G Carneiro » Qua Jun 06, 2012 16:20
- 1 Respostas
- 1179 Exibições
- Última mensagem por Bruno G Carneiro

Qui Jun 07, 2012 19:15
Cálculo: Limites, Derivadas e Integrais
-
- Equação - Dúvida básica sobre a proporcionalidade de equação
por FelipeGM » Qui Jan 12, 2012 19:05
- 4 Respostas
- 7511 Exibições
- Última mensagem por FelipeGM

Sáb Jan 14, 2012 13:16
Álgebra Elementar
-
- Equação - como montar a equação desse problema?
por _Manu » Qua Jul 04, 2012 03:37
- 7 Respostas
- 12876 Exibições
- Última mensagem por _Manu

Qui Jul 05, 2012 01:49
Sistemas de Equações
-
- [Equação polinomial] Ajuda com essa equação?
por Mkdj21 » Sáb Jan 26, 2013 16:19
- 1 Respostas
- 12396 Exibições
- Última mensagem por young_jedi

Dom Jan 27, 2013 17:15
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.