• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação com Parâmetros

Equação com Parâmetros

Mensagempor matheus_frs1 » Ter Fev 10, 2015 11:33

Dadas as equações {x}^{2} - 5x + k = 0 e {x}^{2} -7x + 2k = 0, sabe-se que uma das raízes da segunda equação e o dobro de uma das raízes da primeira equação. Sendo k \neq 0, determine k.

Galera, tentei fazer umas loucuras e cheguei em k = 6, mas fiz inúmeros processos. Alguém me explica uma maneira mais fácil?
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Equação com Parâmetros

Mensagempor Cleyson007 » Ter Fev 10, 2015 15:29

Boa tarde Matheus!

Vamos chamar de "m" e "n" as raízes da primeira equação (x²-5x+k= 0)

Chamaremos de "m" e "2n" as raízes da segunda equação (x² -7x +2k = 0)

Temos que:

m + n = 5
m + 2n= 7

Na primeira equação, temos: m = 5 - n

Substituindo na segunda equação: 5 - n + 2n = 7 ---> n = 2

Como m = 5 - n ---> m = 3

k é o produto das raízes

k= (2)(3) = 6

Comente qualquer dúvida :y:

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação com Parâmetros

Mensagempor matheus_frs1 » Qua Fev 11, 2015 00:02

Vlw, Cleyson, vc fez de uma maneira muito mais simples. Eu fiz cada rolo, kkkkkkkkkkkkkk. Muito obrigado
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Equação com Parâmetros

Mensagempor Cleyson007 » Qua Fev 11, 2015 16:58

Olá Matheus, boa tarde!

Foi um prazer ajudar meu amigo :y:

Aproveitando a oportunidade convido-o para que conheça melhor o meu trabalho: viewtopic.php?f=151&t=13614

Qualquer dúvida estou a disposição.

Abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação com Parâmetros

Mensagempor matheus_frs1 » Qui Fev 12, 2015 12:16

Parabéns pelo trabalho Cleyson.

Agora uma coisa me chamou atenção... vc disse que atende pelo whatsapp e percebi que o DDD é 38 (região do interior de MG).

Que mal lhe pergunte, de qual cidade vc é? Pergunto isso, pq já morei nessa região, precisamente em Montes Claros.
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}