• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação de congruência

Equação de congruência

Mensagempor marinalcd » Qui Nov 21, 2013 12:06

Boa tarde,

estou estudando esse tipo de equações e gostaria de saber se esta resolução está correta:

Resolver 5x\equiv4(mod 7).

Como 5.4 = 20 \equiv(mod7), multiplicamos a equação por 4:
20x=x\equiv16(mod 7)

Logo, S=\{x\in Z|x\equiv16 (mod7)\}=\{x=7k+16,k\in Z\}

Está correto?

Obrigada!
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Equação de congruência

Mensagempor Man Utd » Sex Nov 22, 2013 20:23

marinalcd escreveu:Boa tarde,

estou estudando esse tipo de equações e gostaria de saber se esta resolução está correta:

Resolver 5x\equiv4(mod 7).

Como 5.4 = 20 \equiv(mod7), multiplicamos a equação por 4:
20x=x\equiv16(mod 7)

Logo, S=\{x\in Z|x\equiv16 (mod7)\}=\{x=7k+16,k\in Z\}

Está correto?

Obrigada!



não está correto.

veja:

dada a equação de congruência: 5x\equiv4(mod 7)

multiplicando por 4:

20 \equiv 16 mod(7)


veja que:

20 \equiv -1 mod(7)

16 \equiv 2 mod(7)

então ficamos com:

-x \equiv 2 mod(7)

então:

x \equiv -2 mod(7)

que equivale a : x=7a-2 , com a pertecentes ao conjunto dos números inteiros.

uma segunda alternativa é fazer: 5x-4=17y \\\\\ 5x-17y=4 , resolvendo esta equação diofantina vc obtém o msm resultado. :D
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)