• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação e radiciação

Potenciação e radiciação

Mensagempor anneliesero » Sáb Abr 27, 2013 22:53

Olá, pessoal

como posso resolver essa aqui?


\sqrt[n-1]{\frac{a}{\sqrt[n]{a}}}

O resultado dá \sqrt[n]{a}
''Não confunda jamais conhecimento com sabedoria. Um o ajuda a ganhar a vida; o outro a construir uma vida.'' - Sandra Carey
anneliesero
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Qui Set 13, 2012 17:58
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potenciação e radiciação

Mensagempor nakagumahissao » Dom Abr 28, 2013 02:42

\sqrt[n-1]{\frac{a}{\sqrt[n]{a}}} =\sqrt[n-1]{\frac{a}{a^{ \frac{1}{n}}}} = \sqrt[n-1]{a^{1 - \frac{1}{n}}}  =  \sqrt[n-1]{a^{\frac{n-1}{n}}} =

= \left(a^{\frac{n-1}{n}} \right)^\frac{1}{n-1} = a^{1/n} = \sqrt[n]{a}
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.