por plugpc » Ter Ago 18, 2009 19:54
Numa PA com números ímpar de termos, a soma dos termos de ordem ímpar é 63 e a dos termos de ordem par é 54. Achar n.
R- 13
Gostaria da ajuda de vocês para sanar minhas dúvidas já usei várias fórmulas mas nenhuma chega ao resultado correto pois é a primeira vez que resolvo esse tipo de questão...Se não for abusar da boa vontade de vocês me expliquem pois desde já fico grato
Plugpc...
-
plugpc
- Usuário Dedicado

-
- Mensagens: 31
- Registrado em: Seg Jul 07, 2008 22:00
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: matemática
- Andamento: cursando
por Lucio Carvalho » Qua Ago 19, 2009 12:51
Olá plugpc,
Sabemos que para calcular a soma dos n primeiros termos de uma progressão aritmética usamos a fórmula:

.
Agora, se dizes que a PA tem número de termos ímpar, a soma dos termos de ordem ímpar é 63 e a dos termos de ordem par é 54, então podemos concluir que:

e

Isto quer dizer que:

Resolvendo em ordem a n, teremos:

Bye bye e espero ter ajudado!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
Voltar para Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.