• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PA

PA

Mensagempor plugpc » Ter Ago 18, 2009 19:54

Numa PA com números ímpar de termos, a soma dos termos de ordem ímpar é 63 e a dos termos de ordem par é 54. Achar n.
R- 13


Gostaria da ajuda de vocês para sanar minhas dúvidas já usei várias fórmulas mas nenhuma chega ao resultado correto pois é a primeira vez que resolvo esse tipo de questão...Se não for abusar da boa vontade de vocês me expliquem pois desde já fico grato

Plugpc...
plugpc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Seg Jul 07, 2008 22:00
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matemática
Andamento: cursando

Re: PA

Mensagempor Lucio Carvalho » Qua Ago 19, 2009 12:51

Olá plugpc,
Sabemos que para calcular a soma dos n primeiros termos de uma progressão aritmética usamos a fórmula: {S}_{n}=\frac{n.({a}_{1}+{a}_{n})}{2}.
Agora, se dizes que a PA tem número de termos ímpar, a soma dos termos de ordem ímpar é 63 e a dos termos de ordem par é 54, então podemos concluir que:
63=\frac{n+1}{4}.({a}_{1}+{a}_{n}) e 54=\frac{n-1}{4}.({a}_{1}+{a}_{n})

Isto quer dizer que: \frac{63}{n+1}=\frac{54}{n-1}

Resolvendo em ordem a n, teremos: n=\frac{117}{9}=13
Bye bye e espero ter ajudado!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}