• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probleminha de Notação Científica

Probleminha de Notação Científica

Mensagempor Yumi » Qui Abr 12, 2012 18:23

Já tentei de tudo mas não chego em nenhuma resposta... Meu cérebro vai fundir!!! Alguém me ajude por favor. Qualquer dica é bem vinda...

Um certo tipo de vírus tem um diâmetro de 0,02 x 10 elevado a três mm. Admita que uma colônia desses vírus pudesse ocupar totalmente uma superfície plana de 1 cm quadrado de área, numa única camada. Qual é o número máximo de indivíduos dessa colônia?

A - 4 x 10 elevado a seis
B - 25 x 10 elevado a seis
C - 25 x 10 elevado a dez
D - 25 x 10 elevado a doze
E - 50 x 10 elevado a doze
Yumi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: cursando

Re: Probleminha de Notação Científica

Mensagempor MarceloFantini » Qui Abr 12, 2012 19:28

Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.

Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo r = \frac{d}{2} = 0,01 \cdot 10^{-3} \text{ mm}. A área ocupada pelo vírus portanto é A_v = \pi r^2 = \pi (0,01 \cdot 10^{-3})^2 = \pi (10^{-5})^2 = \pi 10^{-10} \text { mm}^2.

Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Probleminha de Notação Científica

Mensagempor Yumi » Qui Abr 12, 2012 20:51

MarceloFantini escreveu:Yumi, por favor leia as regras do fórum, em especial a número 2. Use LaTeX para redigir suas fórmulas.

Sobre a questão, sabendo o diâmetro podemos calcular o raio, logo r = \frac{d}{2} = 0,01 \cdot 10^{-3} \text{ mm}. A área ocupada pelo vírus portanto é A_v = \pi r^2 = \pi (0,01 \cdot 10^{-3})^2 = \pi (10^{-5})^2 = \pi 10^{-10} \text { mm}^2.

Para encontrar o número de vírus que cabem na área, divida o total coberto pela área de cada um e arredonde. Termine.


Me desculpe.

Minha nossa... fiquei ainda mais perdida...
Yumi
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 12, 2012 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}