• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração

Demonstração

Mensagempor Well » Qua Mar 28, 2012 21:48

Bem,estou tendo um problema com a demonstração matemática,ainda estou aprendendo.

Tenho que demonstrar se a afirmação a baixo é verdadeira ou não

0 < a < b  \Rightarrow  \sqrt[]{a} < \sqrt[]{b}

Obrigado.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Demonstração

Mensagempor ednaldo1982 » Qua Mar 28, 2012 22:15

0 < 4 < 9 \Rightarrow \sqrt[]{4} < \sqrt[]{9}
Avatar do usuário
ednaldo1982
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Seg Mar 26, 2012 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: Demonstração

Mensagempor MarceloFantini » Qua Mar 28, 2012 23:34

Well, que tipo de ferramentas você tem ao seu dispor?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstração

Mensagempor LuizAquino » Qui Mar 29, 2012 12:29

Well escreveu:Bem,estou tendo um problema com a demonstração matemática, ainda estou aprendendo.

Tenho que demonstrar se a afirmação a baixo é verdadeira ou não

0 < a < b  \Rightarrow  \sqrt[]{a} < \sqrt[]{b}


Para provar essa afirmação vamos usar o seguinte produto notável:

\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right) = a - b , com a e b números reais positivos.

Se desejar provar esse produto notável o processo é simples. Basta aplicar a distributiva.

Pois bem. Vejamos como usar esse produto notável para demonstrar a afirmação.

Por hipótese, temos que 0 < a < b. Isso significa que a e b são números reais positivos e diferentes de zero, sendo que a é menor do que b.

Note que podemos escrever que:

a < b
a - b < 0

Como a e b são positivos, podemos usar o produto notável citado anteriormente. Temos então que:

\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right) < 0

Como \sqrt{a} e \sqrt{b} são números positivos (pela definição de raiz quadrada), temos que \sqrt{a} + \sqrt{b} é um número positivo.

Sabemos que a e b não são zero. Sendo assim, temos que \sqrt{a} + \sqrt{b} não é zero. Podemos então dividir toda a inequação anterior por essa soma. Note que a inequação não mudará o seu sentido, pois \sqrt{a} + \sqrt{b} é um número positivo. Temos então que:

\dfrac{\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right)}{\sqrt{a} + \sqrt{b}} < \dfrac{0}{\sqrt{a} + \sqrt{b}}

\sqrt{a} - \sqrt{b} < 0

\sqrt{a} < \sqrt{b}

Isso conclui a prova de que a afirmação é verdadeira.

Observação

ednaldo1982 escreveu:0 < 4 < 9 \Rightarrow \sqrt[]{4} < \sqrt[]{9}


Apenas um exemplo numérico não serve como prova que de que a afirmação é verdadeira.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D