por Renato_RJ » Qui Dez 01, 2011 17:50
Olá pessoal, tudo em paz ??
Seguinte, estou com um problema com uma demonstração, comecei mas fiquei "preso" em um ponto e aí vem a dúvida, estaria certo o que eu escrevi ?? Ou abordei de maneira errada o problema e por isso parei no ponto em questão ??? Segue o problema e a demonstração, ficarei imensamente grato se alguém verificasse para mim.
Problema:
Sejam A e B operadores auto-adjuntos tais que AB = BA. Mostre que existe uma única base ortonormal que diagonaliza simultaneamente A e B.
Demonstração que escrevi e parei:
Como AB = BA então A e B são operadores comutativos. Tenhamos

um autovalor de A e

o auto-espaço associado. Seja

tal que:

Então

é invariante por B. Daí concluímos que v é um autovetor comum a A e a B, então:


-----------------------------------------------
Eu acho que estou errando aqui, pois eu resolvi assumir um vetor

tal que


Daí eu concluo que

pertence a uma base ortonormal... Parece que estou "forçando a barra" e por isso me soa como errado...
Alguém poderia me ajudar com essa demonstração ??
Desde já grato...
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Renato_RJ » Qui Dez 01, 2011 18:51
Fiz as seguintes alterações na demonstração, espero que esteja certa agora:
Seja

dois operadores auto-adjuntos tais que AB = BA, tenhamos

um autovalor de A e

um auto-espaço associado. Agora tenhamos

vetor não nulo tal que:

Como AB = BA, temos:

Logo

é invariante por B. Então v é um autovetor comum a A e a B, logo existe

tal que:

Como

e

são raízes reais dos polinômios característicos de A e B, então

e

são ambos não invertíveis e como:


Então v pertence a uma base

ortonormal de autovetores de A e B, logo a base

diagonaliza A e B simultaneamente.
Bem, será que ficou boa essa ????
Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [algebra linear transformações lineares] operadores lineares
por Ramses » Qui Mar 31, 2016 17:31
- 1 Respostas
- 5374 Exibições
- Última mensagem por adauto martins

Sáb Abr 02, 2016 13:05
Álgebra Linear
-
- Auto estudo de Matemática
por joaofonseca » Sáb Jun 25, 2011 15:35
- 5 Respostas
- 5448 Exibições
- Última mensagem por fraol

Dom Nov 04, 2012 16:05
Educação Matemática
-
- [Tipos especiais de operadores lineares] Cap. 9 Boldrini
por santossilvaane » Sáb Mar 26, 2016 18:00
- 1 Respostas
- 1866 Exibições
- Última mensagem por adauto martins

Dom Mar 27, 2016 11:20
Álgebra Linear
-
- algebra l
por ehrefundini » Qui Mar 05, 2009 08:34
- 1 Respostas
- 7367 Exibições
- Última mensagem por Molina

Qui Mar 05, 2009 21:50
Álgebra
-
- algebra
por uspsilva » Sex Mar 13, 2009 13:03
- 1 Respostas
- 3115 Exibições
- Última mensagem por Molina

Sex Mar 13, 2009 15:22
Pedidos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.