• Anúncio Global
    Respostas
    Exibições
    Última mensagem

S.O.S. PROBLEMAS DE PORCENTAGEM

S.O.S. PROBLEMAS DE PORCENTAGEM

Mensagempor StheilyAnny » Qui Ago 25, 2011 21:55

Olha eu de novo..rs esse ja quebrei cabeça tbm...
"Um comerciante de veículos comercializa dois tipos de automóveis, um nacional e outro importado. Observa-se que, anualmente as vendas dos nacionais diminuem em 20% e as vendas dos importados aumenta 20%. Em 2004, 60% do total das vendas foram de carros nacionais e 40% de carros importados. Em 2006, o percentual de automóveis importados comercializados foi de 60%. certo ou errado?"

Eu coloquei como se o total de carros vendidos fosse 100, fica mais fácil de calcular, então venderam 60 nac e 40 impor. em 2004. Dos 60 nac. tirei 20% que deu 12, então subtrai dos 60, e em 2005 venderam 48. Desses 48 tirei 20% que deu 9,6, tirei dos 48 e ficou 38,4 em 2006. Ja achei estranho ai como vou ver 38 carros e 0,4 dele? :$
Aí dos importados fiz desse jeito: dos 100 venderam 40 tirei 20% que deu 8,e somei que ficou 48 carros em 2005, daí tirei 20% que deu 9,6 e somei, dando 57,6 carros importados em 2006...mas num ta certo como eu faço socorrooo... :girl_hug:
StheilyAnny
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 25, 2011 21:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: S.O.S. PROBLEMAS DE PORCENTAGEM

Mensagempor Neperiano » Sex Ago 26, 2011 15:18

Ola

Partimos do principio que em 2004 foram vendidos 100 carros, 60 deles foram nacionais e 40 importados.

A cada ano o nacional diminui 20% e o importado aumenta 20, pois bem vamos la

2005 - 60.20%=60-12=48 carros nacionais
40.20%-40+8=48 carros importados

2006 - 48.20%=48-9,6=38,4 carros nacioanais
48.20%=48+9,6=57,6 carros importados

Arredondando:
38 carros nacionais
57 carros importados

57+38=95

95-100%
57-x

x=60%

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: S.O.S. PROBLEMAS DE PORCENTAGEM

Mensagempor StheilyAnny » Seg Ago 29, 2011 18:31

Olá, estou estudando pra concursos e tem uns probleminha que estão fritando minha cabeça rsrs esse é um deles:
"Em uma comunidade, somente 18% dos habitantes são a favor de certa proposta. Se 30% dos homens são favoráveis á proposta e 10% das mulheres são favoráveis à mesma proposta, então a porcentagem de homens nessa comunidade é de 40%. Certo ou errado?"

Eu ja tentei muitoo, fiz supostamente que o total de habitantes é 1000 e tirei os 18% que são 180 hab. que seriam os favoráveis a proposta. Depois daí tentei tirar os 30% dos 180 que deu 54, mas num é certo. Então tentei tirar os 30% dos 1000 que é 300, mas não entra na minha cabeça como resolver esse problema. Pode me ajudar?
StheilyAnny
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Ago 25, 2011 21:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D