• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números primos e outras travas

Números primos e outras travas

Mensagempor victorleme » Ter Mai 03, 2011 11:20

1- p e q são números inteiros,positivos e relativamente primos,\frac{p}{q}\equi=\frac{1}{\frac{1}{4}+\frac{1}{3}} , qual é o valor de p+q?

Minha primeira dúvida, o que ele quer dizer com números "relativamente primos", números próximos?
No gabarito ele fala que a resposta de p+q é igual a 19, mas se substituirmos não chegamos a esse valor.


2-) X=\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+....}}}} , prove que x é um número real.

Esse realmente não sei por onde começar.
victorleme
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 23, 2011 19:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecatrônica
Andamento: cursando

Re: Números primos e outras travas

Mensagempor Abelardo » Ter Mai 03, 2011 13:06

1) ''Relativamente primos'' quer dizer que são primos entre si, o único número inteiro e positivo que divide p e q é 1.

O gabarito está correto, veja --> \frac{p}{q}\equi=\frac{1}{\frac{1}{4}+\frac{1}{3}} \to \frac{p}{q}\equi=\frac{1}{\frac{3 + 4}{12}}\to \frac{p}{q}\equi=\frac{1}{\frac{7}{12}}\to\frac{p}{q}\equi=\frac{1}{1} \cdot \frac{12}{7} \to \frac{p}{q}\equi=\frac{12}{7} logo 12 + 7 = 19.


2) Temos a seguinte equação X=\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+....}}}}. Podemos elevar ambos os lado ao quadrado. X^2=\left(\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+....}}}} \right)^2 --->

X^2= 6 + \sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+\sqrt[2]{6+....}}}}, agora perceba que no segundo membro da equação temos seis somado a '' X ''. Ficamos com x^2= 6 + x, ai é só passar o seis e o x para o primero membro e resolver a equação do segundo grau. Você encontrará duas raízes reais, uma negativa e outra positiva, mas lembrando que \sqrt[2]{x^2}= \left|x \right|... logo só sobrará a raiz positiva que é 3; provando assim que x é número real.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números primos e outras travas

Mensagempor Abelardo » Ter Mai 03, 2011 15:56

No final eu disse ''provando'', é melhor entender que ''encontramos'' um valor real para x.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números primos e outras travas

Mensagempor victorleme » Ter Mai 03, 2011 19:06

Abelardo escreveu:1) ''Relativamente primos'' quer dizer que são primos entre si, o único número inteiro e positivo que divide p e q é 1.

Não compreendi, quer dizer que o MDC deles seria 1?
O valor de p e q seria 12 e 7 respectivamente? Mas não seria somente o 7 primo?

Aqui, por que você multiplicou por 1?
\frac{p}{q}\equi=\frac{1}{1} \cdot \frac{12}{7}
victorleme
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 23, 2011 19:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecatrônica
Andamento: cursando

Re: Números primos e outras travas

Mensagempor Abelardo » Ter Mai 03, 2011 20:05

Não compreendi, quer dizer que o MDC deles seria 1? A resposta é sim. Há algum outro número inteiro e positivo que divide 12 e 7? Não, não há.


O valor de p e q seria 12 e 7 respectivamente? Sim. Mas para resolver a questão isso é um tanto relevante. Veja que ele quer saber o resultado de p + q; a ordem das parcelas não altera a soma. Tenha em mente que precisávamos encontrar uma fração irredutível e depois somar as suas partes.


Mas não seria somente o 7 primo? Não é bem isso. Você está confundindo número primo com primos relativos. Sete é sim um número primo e doze não, mas quando procuramos um número que divida doze e sete simultaneamente só encontramos 1 e nesses casos dizemos que doze e sete são primos entre si.


Aqui, por que você multiplicou por 1?
\frac{p}{q}\equi=\frac{1}{1} \cdot \frac{12}{7}


Quando temos uma fração dividindo outra o que devemos fazer? Multiplicar a primeira fração pelo inverso da segunda. Fiz isso nessa parte --> \frac{p}{q}\equi=\frac{1}{\frac{7}{12}}. Depois apliquei a propriedade e ficou assim \frac{p}{q}\equi=\frac{1}{1} \cdot \frac{12}{7}

:coffee:
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números primos e outras travas

Mensagempor victorleme » Qua Mai 04, 2011 00:54

Aopa!
Esclareceu tudo!
victorleme
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 23, 2011 19:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecatrônica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?