por Caeros » Sáb Mar 19, 2011 18:34
Estou estudando o material que postei neste fórum e tenho algumas dúvidas:
Mostre que

não tem soluções:
Solução:
Para qualquer que seja x inteiro, temos:
x

0,1,2,3,4,5,6,7(mod8)

aqui entendo que é aplicada a propriedade que diz: "Sabemos que a

b(modm)

a = b+mk, para algum k

Z. Neste
caso b coincidirá com o resto da divisão euclidiana de "a " por "m ",se e somente,

"
logo,

aqui compreendo que foi aplicada a
propriedade que diz: "

Daí,

já aqui não consigo compreender qual propriedade foi aplicada ou como chegou a estes valores????
continuando:
Ou melhor

como não entendi anteriormente não entendi como estes valores provam a insolubilidade!!!
O que garante a insolubilidade de

-
Caeros
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Seg Mai 25, 2009 19:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Renato_RJ » Sáb Mar 19, 2011 20:56
Eu não consegui chegar neste resultado, veja o que eu fiz:

Mas montando as classes de equivalência módulo 8 ou sistema completo de resto módulo 8 para x teremos:

Fazendo

e usando a propriedade já citada, teremos:

Como estamos trabalhando com as classes de resto, teremos:

Logo teremos:

Então teremos:

Aqui você percebe que não há solução para

, pois o resto da divisão será 1, 2 ou 5...
Não sei se estou certo, mas pela lógica, parece que sim... Se estou errando em algum lugar, gostaria de saber a onde (fiquei curioso)...
Editado pela última vez por
Renato_RJ em Sáb Mar 19, 2011 22:59, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Renato_RJ » Sáb Mar 19, 2011 22:57
Esse seu caso me lembrou a seguinte demonstração:
Provar que, qualquer que seja o inteiro ímpar a, o resto da divisão de

por 8 é 1.
Solução:
Os restos possíveis da divisão de a por 8 são 1, 3, 5 ou 7 (chamamos isso de sistema reduzido de resíduo módulo 8, pois só estão nele os restos relativamente primos a 8).
Logo:


Como

teremos:

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por Caeros » Dom Mar 20, 2011 00:38
Olá Renato, obrigado por colaborar,mas quem quer saber tem que perguntar:
estou começando a estudar este assunto, então vou lhe perguntar:
1) O que vc está dizendo com "classes de equivalência módulo 8"? sei que congruência é uma relação de equivalência, então vc está dizendo que x = {0, 1, 2, 3, 4, 5, 6, 7} é o conjunto dos restos que se podem ter na divisão por 8 ou os valores que x pode assumir? Quer dizer estes números se relacionam com 8 por ser os retos relacionados a ele na divisão?
2) e o sistema completo de resto módulo 8 para x, então este é o conjunto de números que podem ser restos?
3) de onde saiu

? na resposta que postei pois tirei do material e se estiver errado tenho que corrigir a fonte ou seja onde consegui o material.
Mais uma vez obrigado está me ajudando bastante.

-
Caeros
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Seg Mai 25, 2009 19:01
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Renato_RJ » Dom Mar 20, 2011 03:27
Caeros escreveu:Olá Renato, obrigado por colaborar,mas quem quer saber tem que perguntar:
estou começando a estudar este assunto, então vou lhe perguntar:
1) O que vc está dizendo com "classes de equivalência módulo 8"? sei que congruência é uma relação de equivalência, então vc está dizendo que x = {0, 1, 2, 3, 4, 5, 6, 7} é o conjunto dos restos que se podem ter na divisão por 8 ou os valores que x pode assumir? Quer dizer estes números se relacionam com 8 por ser os retos relacionados a ele na divisão?
Caeros, concordo plenamente, se deseja saber tem mais é que perguntar !!!
Lembre-se que estamos tratando de divisão pelo algoritmo de Euclides, isto é, x = 8k + r, onde r é o resto.. As classes de equivalência na verdade são o que chamamos de partições, elas representam os restos das divisões por 8 (neste caso) então cada classe dessa é um conjunto separado, veja:
Quando falamos de classe 0, por exemplo, estamos falando de todos os números inteiros cuja a divisão por 8 dá resto zero, então 0 = {...,8,16,32,48,..} e quando falamos de classe 1 estamos falando do conjunto dos números inteiros cuja a divisão por 8 dá resto 1, então 1 = {...,9,17,33,49,..}.
Caeros escreveu:2) e o sistema completo de resto módulo 8 para x, então este é o conjunto de números que podem ser restos?
Exatamente, como eu disse anteriormente... Classe 3 significa todos os inteiros cuja a divisão por 8 tenha resto 3, então 3 = {...,11,19,35,51,..}.
Caeros escreveu:3) de onde saiu

? na resposta que postei pois tirei do material e se estiver errado tenho que corrigir a fonte ou seja onde consegui o material.
Mais uma vez obrigado está me ajudando bastante.

Boa pergunta, eu também quero saber... Se me apresentassem esse problema sem a demonstração, eu teria feito do jeito que escrevi, eu também não entendi a onde o autor obteve esses números e sabe o que é mais interessante ?? Andei pesquisando na internet agora e vi um pdf onde o autor faz o mesmo exercício da mesma maneira, agora eu fiquei confuso, pois devo ter errado em algum lugar (ou no raciocínio da questão)... Vamos esperar o pessoal mais experiente (Luiz Aquino, Molina ou o Fantini) lerem a questão e postarem suas opiniões ou correções.
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Matéria de Divisibilidade e Congruências
por EREGON » Ter Mai 12, 2015 11:49
- 1 Respostas
- 2332 Exibições
- Última mensagem por adauto martins

Qua Mai 13, 2015 13:24
Teoria dos Números
-
- algebra l
por ehrefundini » Qui Mar 05, 2009 08:34
- 1 Respostas
- 7367 Exibições
- Última mensagem por Molina

Qui Mar 05, 2009 21:50
Álgebra
-
- algebra
por uspsilva » Sex Mar 13, 2009 13:03
- 1 Respostas
- 3112 Exibições
- Última mensagem por Molina

Sex Mar 13, 2009 15:22
Pedidos
-
- Algebra
por mattheusramos14 » Ter Ago 03, 2010 01:26
- 1 Respostas
- 2633 Exibições
- Última mensagem por MarceloFantini

Ter Ago 03, 2010 13:37
Álgebra Elementar
-
- ALGEBRA
por JOHNY » Sex Set 03, 2010 23:50
- 1 Respostas
- 2615 Exibições
- Última mensagem por MarceloFantini

Sáb Set 04, 2010 13:12
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.