• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida em um calculo de função, ajudem por favor!

Duvida em um calculo de função, ajudem por favor!

Mensagempor paulohenrique_ » Seg Out 22, 2012 16:29

Uma construtora deseja cercar um terreno de 1000m² para sua sede, em três de seus lados, deixando o quarto lado para a construção. Seu objetivo como Engenheiro é projetar isso, de forma a usar o mínimo de muro.
A) Sejam x e y as dimensões do tereno e L o comprimento da cerca requerido para cercar aquelas dimensões. Como a área é de 1000m², devemos ter xy=1000. Ache uma fórmula para L em termos de x e de y e então expresse L em termos só de x usando a quação da área.

B) Há restrições sobre os valores de x? Justifique.

Por faor me ajudem a resolver essa questão.
paulohenrique_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 16:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: engenharia
Andamento: cursando

Re: Duvida em um calculo de função, ajudem por favor!

Mensagempor Russman » Seg Out 22, 2012 17:04

O que você tentou fazer?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Duvida em um calculo de função, ajudem por favor!

Mensagempor paulohenrique_ » Seg Out 22, 2012 17:14

Russman escreveu:O que você tentou fazer?

então estava me baseando em outro exercício que me pareceu meio identico porém é em metros e este que estou quebrando a cabeça é em metros². O exercício parecido que consegui resolver eu fiz assim era um quadrado, o mesmo dividi o valor dado em metros que era 200 pra 50 cada lado do quadrado usei x e y no caso x vale duas partes do quadrado e y as outras duas, então desenvolvi chamando a area total de perimetro 200m e apliquei A=X.Y resultou em x(100-x) depois eu joguei o que consegui nessa formula y=ax²+bx+c porém este exercício que estou com dificuldade só quer tres partes do terreno deixando uma aberta, estou quebrando a cabeça e não consigo. Obrigado se conseguir solucionar minha dúvida.
paulohenrique_
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Out 22, 2012 16:26
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: engenharia
Andamento: cursando

Re: Duvida em um calculo de função, ajudem por favor!

Mensagempor Russman » Seg Out 22, 2012 18:20

Se L é o comprimento requerido da cerca do terreno então este é o perímetro do mesmo. Logo, L=2x+y, supondo que o terreno seja retangular e que o lado sem cerca seja o de comprimento y.
Como você sabe o valor que deve medir a área desse terreno, os 1000 m², você tem a relação x.y=1000 de onde , isoladamente, os valores de y com relação aos de x são dados por y=\frac{1000}{x}. Dessa forma,

L=2x+y \Rightarrow L=2x+\frac{1000}{x}

Veja que se x=0 o valor do perímetro não se define. Logo, existe a restrição x\neq 0.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D