por rafaela10g » Sex Ago 14, 2009 22:06
Alguém poderia me explicar como resolvo esse problema?
Qual é o valor da soma dos inversos dos quadrados das duas raízes da equação x² + x + 1 = 0?
-
rafaela10g
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Ago 14, 2009 22:03
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por Felipe Schucman » Sex Ago 14, 2009 22:32
rafaela10g escreveu:Alguém poderia me explicar como resolvo esse problema?
Qual é o valor da soma dos inversos dos quadrados das duas raízes da equação x² + x + 1 = 0?
Você pode usar a relações das raizes(Relações de Girard):
Soma dais raizes ----> -b/a = -1 = x1 + x2
Produto das raizes ---> c/a= 1 = x1.x2
O problema: 1/x1 + 1/x2 = x2+x1/x1.x2 = -1/1 = -1 ----> pronto!
Acho que é o jeito mais facil!
Um Abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por Elcioschin » Sáb Ago 15, 2009 19:42
Continundo:
x² + x + 1 = 0
x1 + x² = - 1 ----> I
x1*x2 = + 1 ------> II
1/x1² + 1/x2² = (x1² + x2²)/(x1*x2)² = [(x1² + 2*x1*x2 + x2²) - 2*x1*x2]/(x1*x²)² = [(x1 + x2)² - 2*x1*x2]/(x1*x2)²
Substituindo os valores de I e II -----> 1/x1² + 1/x2² = [(-1)² - 2*(+1)]/(+1)² = - 1
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [raiz da equação] qual a raiz da equação
por lais1906 » Qui Out 11, 2012 14:47
- 3 Respostas
- 1880 Exibições
- Última mensagem por lais1906

Sáb Out 13, 2012 00:17
Equações
-
- equação simples com raiz
por Debylow » Ter Dez 04, 2012 15:18
- 3 Respostas
- 2151 Exibições
- Última mensagem por Cleyson007

Qua Dez 05, 2012 07:52
Equações
-
- FEI - Equação com Raíz Quadrada
por MMUNOZ » Sex Mai 10, 2013 12:22
- 0 Respostas
- 1027 Exibições
- Última mensagem por MMUNOZ

Sex Mai 10, 2013 12:22
Equações
-
- [raiz] equação epcar
por Ederson_ederson » Seg Jul 13, 2015 10:12
- 4 Respostas
- 3282 Exibições
- Última mensagem por Ederson_ederson

Qui Jul 16, 2015 16:56
Álgebra Elementar
-
- Equação raiz e polinomio
por Rosi7 » Sáb Mai 23, 2015 09:44
- 3 Respostas
- 2576 Exibições
- Última mensagem por Rosi7

Qui Mai 28, 2015 19:33
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.