• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros complexoe e trig.

Numeros complexoe e trig.

Mensagempor lherme2008 » Dom Jul 22, 2012 21:29

Carl Friedrich Gauss (1777 – 1855) foi o matemático com maior destaque no século XIX.
Dentre inúmeras contribuições de Gauss à Matemática, ele é considerado um dos
primeiros matemáticos a associar números complexos a pares ordenados de números
reais. (RIBEIRO, 2010. p. 278).
Três números complexos z1, z2 e z3 são tais que |z1 – z2| = 7, |z2 – z3| = 8 e |z3 – z1| = 9.
Sendo A, B e C os afixos desses números, no plano de Argand-Gauss, pode-se afirmar que a medida,
em u.c. do raio da circunferência inscrita no triângulo ABC, é igual a:
lherme2008
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Jul 21, 2012 22:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vestibular
Andamento: cursando

Re: Numeros complexoe e trig.

Mensagempor fraol » Seg Jul 23, 2012 16:45

Boa tarde,

Há uma fórmula que relaciona o raio da circunferência inscrita em um triângulo com os seus lados:

Fórmula (*): r = \frac{\sqrt{p(p-a)(p-b)(p-c)}}{p} , onde:

r é o raio da circunferência inscrita.

a, b, c são os lados do triângulo.

p = \frac{a+b+c}{2} (semiperímetro do triângulo).

Essa fórmula é baseada no cálculo da área do triângulo em função dos lados ( A =\sqrt{p(p-a)(p-b)(p-c)} ) e no cálculo da área do triângulo em função do raio da circunferência inscrita ( A = pr ).

No caso do problema os módulos dos números complexos servem somente para indicar a distância entre os pontos, ou seja, para apontar o tamanho dos lados do triângulo. O triângulo ABC do problema tem lados 7, 8 e 9. No mais é aplicar a fórmula (*) acima.


.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Numeros complexoe e trig.

Mensagempor e8group » Seg Jul 23, 2012 17:37

ABC.png



Boa tarde gostaria de compartilhar minha ideia também .


Priemeiro vamos expressar a Área de Do triângulo ABC ,Com base na figura acima veja que ,


A_{ABC}  = \frac{1}{2} |BC|\cdot h ,entretanto por outro lado obtemos :

A_{ABC}  =  A_{ABM} +A_{ACM} +A_{MBC} = \frac{r}{2}\left(|AB| +|BC| +|AC|\right)

Com isso vale a seguinte relação :


r = \frac{|BC| \cdot h}{|AB| +|BC| +|AC|} .Lembrando que

|AB| = 7 ; |AC| = 9 ;|BC| = 8 implica r = \frac{h}{3}


Cabe a nós determinarmos a altura do triângulo ,para isso segue que :

Utuilizando a lei dos cossenos em ABC obtemos :

cos(\gamma) = \frac{2}{7}

Utilizando relações trigonometricas no triângulo ABF , temos :

cos(\gamma) = \frac{BF}{7} \therefore |BF| = 2 e finalmente

aplicando pitágoras em =ABF  , h^2 = |AB|^2-|BF|^2 \implies h = \sqrt{|AB|^2-|BF|^2} \implies h =\sqrt{49-4}  = \sqrt{45} = 3\sqrt{5} .Ou seja ,


r = \frac{h}{3} \implies r =\frac{3\sqrt{5}}{3} = \sqrt{5}


Espero que ajude também !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?