• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação modular

Equação modular

Mensagempor amandactdas » Qui Jul 23, 2009 13:14

Olá, sou estudante do 3° ano do ensino médio da rede pública e estou revisando algumas matérias.
Eis que não aprendi muito sobre módulos, e me deparo com o seguinte exercício da PUC-MG:
A soma das raízes da equação: x² - x - |x| - 4 = 0

A resposta é: \sqrt[2]{5} - 1

Ao realizar meus cálculos levei em consideração a propriedade modular que diz que: |x|² = |x²| = x²
então mudei a equação principal para |x|² - x - |x| - 4 = 0
A partir daí não sei se posso colocar o outro x em módulo... Mesmo assim tentei, então ficou:
|x|² - |x| - |x| - 4 = 0 , Substitui |x| por y , e fiz a resolução normalmente:
y² - 2y - 4 = 0 , Raízes: y' = \frac{2 + 2\sqrt[2]{5}}{2} e y" = \frac{2 - 2\sqrt[2]{5}}{2}

Agora não sei como continuar... poderiam me ajudar?
amandactdas
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 23, 2009 12:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação modular

Mensagempor Molina » Qui Jul 23, 2009 15:26

Boa tarde, Amanda.

Acho que estavas no caminho certo.

Como temos módulo de x vamos considerar dois casos: x positivo e x negativo.
E por termos uma equação de 2° grau é bem provável que cada caso tenha 2 soluções, totalizando 4 soluções no final que deverão ser somadas:

i) |x| = x

x^2 - x - |x| - 4 = 0

x^2 - x - x - 4 = 0

x^2 - 2x - 4 = 0

{x}_{1}=\frac{2+2\sqrt{5}}{2}=1+\sqrt{5}

{x}_{2}=\frac{2-2\sqrt{5}}{2}=1-\sqrt{5}

ii) |x| = -x

x^2 - x - |x| - 4 = 0

x^2 - x - (-x) - 4 = 0

x^2 - 4 = 0

x^2=4

{x}_{3}=+2

{x}_{4}=-2

Estranho que somando os quatro resultados obtidos dá diferente da resposta que voce diz ser a certa.

:n:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)