• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação modular

Equação modular

Mensagempor amandactdas » Qui Jul 23, 2009 13:14

Olá, sou estudante do 3° ano do ensino médio da rede pública e estou revisando algumas matérias.
Eis que não aprendi muito sobre módulos, e me deparo com o seguinte exercício da PUC-MG:
A soma das raízes da equação: x² - x - |x| - 4 = 0

A resposta é: \sqrt[2]{5} - 1

Ao realizar meus cálculos levei em consideração a propriedade modular que diz que: |x|² = |x²| = x²
então mudei a equação principal para |x|² - x - |x| - 4 = 0
A partir daí não sei se posso colocar o outro x em módulo... Mesmo assim tentei, então ficou:
|x|² - |x| - |x| - 4 = 0 , Substitui |x| por y , e fiz a resolução normalmente:
y² - 2y - 4 = 0 , Raízes: y' = \frac{2 + 2\sqrt[2]{5}}{2} e y" = \frac{2 - 2\sqrt[2]{5}}{2}

Agora não sei como continuar... poderiam me ajudar?
amandactdas
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 23, 2009 12:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação modular

Mensagempor Molina » Qui Jul 23, 2009 15:26

Boa tarde, Amanda.

Acho que estavas no caminho certo.

Como temos módulo de x vamos considerar dois casos: x positivo e x negativo.
E por termos uma equação de 2° grau é bem provável que cada caso tenha 2 soluções, totalizando 4 soluções no final que deverão ser somadas:

i) |x| = x

x^2 - x - |x| - 4 = 0

x^2 - x - x - 4 = 0

x^2 - 2x - 4 = 0

{x}_{1}=\frac{2+2\sqrt{5}}{2}=1+\sqrt{5}

{x}_{2}=\frac{2-2\sqrt{5}}{2}=1-\sqrt{5}

ii) |x| = -x

x^2 - x - |x| - 4 = 0

x^2 - x - (-x) - 4 = 0

x^2 - 4 = 0

x^2=4

{x}_{3}=+2

{x}_{4}=-2

Estranho que somando os quatro resultados obtidos dá diferente da resposta que voce diz ser a certa.

:n:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.