por brunock » Ter Mai 22, 2012 16:14
Olá gente, tudo bem?
Sou novo aqui no Fórum, e gostaria de saber se vocês poderiam me ajudar em alguns exercícios com Regra de Cramer.
Estou com dificuldades, pois perdi a explicação do professor e agora não consigo desenvolver os exercícios passados... Poderiam me ajudar? Aqui estão eles:
a) { x + y = 6
x - y = 2
b) { 2x + 4 y = 3
3x - 2 y = 1
c) { x - y + Z = 0
x + 2y - 2Z = 3
2x - y - Z = -3
d) { x - y + Z = 0
2x - 4y + 6Z = 1
x + y + Z = 3
Até onde sei, é necessário passar essas dados para um determinante, mas como funciona essa montagem? Eu li alguns exemplos na internet mas não consegui compreender...
Desde já muitíssimo obrigado!
-
brunock
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Mai 22, 2012 16:06
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Dom Mai 27, 2012 15:04
a)

Calculando

:

Calculando

:

Calculando

:

Obtemos x efetuando a divisão

, veja:

Obtemos y efetuando a divisão

:

Note que, para calcular

coloquei na primeira coluna (coeficientes de x) os termos independentes das equações.
Para calcular

, ponha os termos independentes das equações na segunda coluna (coeficientes de y).
Tente fazer a "b", caso não consiga exponha as dúvidas!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes] Regra de Cramer
por jessica cheang » Ter Jun 09, 2015 19:13
- 0 Respostas
- 3610 Exibições
- Última mensagem por jessica cheang

Ter Jun 09, 2015 19:13
Matrizes e Determinantes
-
- Função (Precisando urgentemente me encontrar neste assunto)
por adna » Qui Fev 20, 2014 00:11
- 3 Respostas
- 2107 Exibições
- Última mensagem por Russman

Seg Fev 24, 2014 00:10
Funções
-
- escalonamento e não Cramer :s
por Sofiaxavier » Sáb Nov 20, 2010 15:19
- 4 Respostas
- 2832 Exibições
- Última mensagem por Molina

Dom Nov 21, 2010 19:20
Matrizes e Determinantes
-
- Método de Cramer
por Stephani » Dom Mai 24, 2015 16:07
- 3 Respostas
- 10377 Exibições
- Última mensagem por Cleyson007

Dom Mai 24, 2015 18:01
Matrizes e Determinantes
-
- [Ajuda] Regra de Simpson
por kaaps » Sáb Mai 12, 2012 20:54
- 1 Respostas
- 1584 Exibições
- Última mensagem por LuizAquino

Seg Mai 14, 2012 09:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.