• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Trigonometrico

Limites Trigonometrico

Mensagempor fnolasco » Qua Mar 28, 2012 18:17

lim \frac{1-2cosx+cos2x}{x^2}, x\rightarrow0


lim \frac{6x-sen2x}{2x+3sen4x},x\rightarrow0



lim \frac{tg^3\frac{x+1}{4}}{(x+1)^3},x\rightarrow-1

Sem ser por L'Hospital ou qualquer regra de derivação, desde já agradeço
fnolasco
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 28, 2012 18:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng.Civil
Andamento: cursando

Re: Limites Trigonometrico

Mensagempor LuizAquino » Qua Mar 28, 2012 19:11

fnolasco escreveu:lim \frac{1-2cosx+cos2x}{x^2}, x\rightarrow0


Dica

1) \cos 2x = \cos (x + x) = (\cos x)(\cos x) - (\,\textrm{sen}\, x)(\,\textrm{sen}\, x) = \cos^2 x - \,\textrm{sen}\,^2 x .

2) multiplique o numerador e o denominador por 1 + \cos x .


fnolasco escreveu:lim \frac{6x-sen2x}{2x+3sen4x},x\rightarrow0


Dica

1) Divida o numerador e o denominador por 8x.

fnolasco escreveu:lim \frac{tg^3\frac{x+1}{4}}{(x+1)^3},x\rightarrow-1


Dica

1) Use a definição de tangente: \textrm{tg}\, \alpha = \frac{\textrm{sen}\,\alpha}{\cos \alpha}

Observação

Para digitar um limite use um código como:

Código: Selecionar todos
[tex]\lim_{x\to c} f(x)[/tex]


O resultado desse código é:

\lim_{x\to c} f(x)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.