por jmoura » Sex Mar 23, 2012 23:20
Preciso de ajuda para resolver esse limite:
![\lim_{x->0+}\frac{\sqrt[]{x+1}-1}{\sqrt[]{x}} \lim_{x->0+}\frac{\sqrt[]{x+1}-1}{\sqrt[]{x}}](/latexrender/pictures/1a5ca40e10426f5568b0e1bd345b869b.png)
Tentei racionalizar por
![\sqrt[]{x+1}+1 \sqrt[]{x+1}+1](/latexrender/pictures/933f19d6c0abf370a1ea62994fab885d.png)
no numerador e denominador, mas de nada adiantou!
-
jmoura
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Mar 23, 2012 22:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] Com a raiz no numerador e denominador!!
por mih123 » Seg Ago 27, 2012 03:52
- 6 Respostas
- 5086 Exibições
- Última mensagem por mih123

Ter Ago 28, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites com raízes e zerando numerador/denominador
por renataoalves » Ter Set 16, 2014 17:14
- 1 Respostas
- 3607 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:14
Cálculo: Limites, Derivadas e Integrais
-
- [limite] Raiz no numerador
por emanes » Qua Ago 22, 2012 09:08
- 1 Respostas
- 1699 Exibições
- Última mensagem por e8group

Qua Ago 22, 2012 10:32
Cálculo: Limites, Derivadas e Integrais
-
- Limite raiz numerador
por Darkila » Qua Abr 27, 2016 15:49
- 3 Respostas
- 4482 Exibições
- Última mensagem por Ninno Nascimento

Seg Mai 02, 2016 20:50
Cálculo: Limites, Derivadas e Integrais
-
- Limite com raiz de X no denominador
por janainasabidussi » Dom Out 26, 2014 17:42
- 1 Respostas
- 2081 Exibições
- Última mensagem por adauto martins

Seg Out 27, 2014 14:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.