por jmoura » Sex Mar 23, 2012 23:20
Preciso de ajuda para resolver esse limite:
![\lim_{x->0+}\frac{\sqrt[]{x+1}-1}{\sqrt[]{x}} \lim_{x->0+}\frac{\sqrt[]{x+1}-1}{\sqrt[]{x}}](/latexrender/pictures/1a5ca40e10426f5568b0e1bd345b869b.png)
Tentei racionalizar por
![\sqrt[]{x+1}+1 \sqrt[]{x+1}+1](/latexrender/pictures/933f19d6c0abf370a1ea62994fab885d.png)
no numerador e denominador, mas de nada adiantou!
-
jmoura
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Mar 23, 2012 22:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] Com a raiz no numerador e denominador!!
por mih123 » Seg Ago 27, 2012 03:52
- 6 Respostas
- 5060 Exibições
- Última mensagem por mih123

Ter Ago 28, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites com raízes e zerando numerador/denominador
por renataoalves » Ter Set 16, 2014 17:14
- 1 Respostas
- 3586 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:14
Cálculo: Limites, Derivadas e Integrais
-
- [limite] Raiz no numerador
por emanes » Qua Ago 22, 2012 09:08
- 1 Respostas
- 1694 Exibições
- Última mensagem por e8group

Qua Ago 22, 2012 10:32
Cálculo: Limites, Derivadas e Integrais
-
- Limite raiz numerador
por Darkila » Qua Abr 27, 2016 15:49
- 3 Respostas
- 4468 Exibições
- Última mensagem por Ninno Nascimento

Seg Mai 02, 2016 20:50
Cálculo: Limites, Derivadas e Integrais
-
- Limite com raiz de X no denominador
por janainasabidussi » Dom Out 26, 2014 17:42
- 1 Respostas
- 2061 Exibições
- Última mensagem por adauto martins

Seg Out 27, 2014 14:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 10:38
Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:
Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?
Grata.
Assunto:
Conjunto dos números racionais.
Autor:
MarceloFantini - Sex Fev 18, 2011 12:27

Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 12:55
também pensei que fosse assim, mas a resposta é

.
Obrigada Fantini.
Assunto:
Conjunto dos números racionais.
Autor:
MarceloFantini - Sex Fev 18, 2011 13:01
Como

:
O que você fez?
Assunto:
Conjunto dos números racionais.
Autor:
scggomes - Sex Fev 18, 2011 16:17
eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.
Obrigada.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.