• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor rareirin » Qua Fev 22, 2012 17:07

Aparenta ser um exercício simples, queria uma explicação bem detalhada se possível. Obrigado


\lim_{x\rightarrow1}\frac{3x^2+3x-6}{x^2+2x-3^}
rareirin
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 22, 2012 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limite

Mensagempor joaofonseca » Qua Fev 22, 2012 17:28

Antes de dar algumas pistas para a resolução deste problema.Não resisto a perguntar.

rareirin estás mesmo a frequentar o curso de engenharia civil, conforme consta no teu perfil???

Se substituir-mos x por 1 chegamos a uma indeterminação do tipo 0/0.Portanto temos de decompor denominador e numerador para eleminar o fator comum.
No numerador, deves primeiro colocar em evidência o 3, de forma a evitar o coeficiênte de x^2 maior que 1.Depois é decompor seja o numerador, seja o denominador, mantendo sempre o 3 em evidência.
O monomio [tex]x-1[/text] será o fator comum, e assim pode ser eliminado tanto do denominador como do numerador.
A partir daqui basta substituir x por 1, não esquecendo de multiplicar por 3.No fim basta simplificar a fração.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Limite

Mensagempor rareirin » Qui Fev 23, 2012 10:17

Na verdade hoje é o primeiro dia de aula. KKK
Quero entrar sabendo alguma coisa, costume meu =)
-----------------------------------------------------------------
Nossa não conseguir entender nada *-)
Acho melhor eu ir nas aulas para depois tirar minha dúvidas :-D
rareirin
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Fev 22, 2012 16:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Fev 23, 2012 13:10

rareirin escreveu:Na verdade hoje é o primeiro dia de aula. KKK
Quero entrar sabendo alguma coisa, costume meu =)
-----------------------------------------------------------------
Nossa não conseguir entender nada *-)
Acho melhor eu ir nas aulas para depois tirar minha dúvidas :-D


Eu gostaria de recomendar que você assista a videoaula "01. Cálculo I - Noção Intuitiva de Limite". Ela está disponível em meu canal no YouTube:

http://www.youytube.com/LCMAquino

Após assistir a videoaula, tente resolver esse exercício.

Dica

Para resolver o limite que você deseja, primeiro você precisa fatorar os polinômios que aparecem na fração. Em seguida, basta efetuar uma simplificação.

Vale lembrar que uma expressão polinomial do 2º grau dada por ax^2 + bx + c pode ser escrita na sua forma fatorada como sendo a(x - x_1)(x - x_2) , onde x_1 e x_2 são as raízes da equação ax^2 + bx + c = 0 . Em outras palavras, temos que: ax^2 + bx + c = a(x - x_1)(x - x_2) .

Exemplo

Considere a expressão polinomial do 2º grau dada por 5x^2 - 20x + 15 .

Calculando as raízes da equação 5x^2 - 20x + 15 = 0 , obtemos x_1 = 1 e x_2 = 3 . Portanto, a forma fatorada desse polinômio é:

5x^2 - 20x + 15 = 5(x-1)(x-3)

Confira essa relação. Aplique a distributiva para desenvolver 5(x-1)(x-3) e verificar que o resultado será 5x^2 - 20x + 15 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.