• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Identidades Trigonométricas

Identidades Trigonométricas

Mensagempor Camila Z » Seg Jan 16, 2012 23:15

Bom, preciso provar que:
(senx+cosx)(senx-cosx)=2sen^2x -1

Estou tentando fazer pela regra do quad. do 1º + 2 vezes os elementos - o quad. do 2º: (senx)^2+2senx.cosx-(cosx)^2, dividi tudo por cosx^2 para obter o 1 do final, mas não consigo chegar na igualdade...

E tb nesta outra igualdade: senx^2/1-cosx + secx^2-tgx^2/secx = 1
Em todas minhas tentativas, sobra o 1 e o cosx tb!

Obrigada
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Seg Jan 16, 2012 23:47

Camila Z escreveu:Bom, preciso provar que:
Boa noite Camila Z.
(senx+cosx)(senx-cosx)=2sen^2x -1

(senx+cosx)(senx-cosx) \Rightarrow sen^2x - cos^2x \Rightarrow - (cosx^2 - sen^2x)
\Rightarrow - (1 - sen^2x - sen^2x) \Rightarrow - (1 - 2sen^2x) \Rightarrow 2sen^2x - 1
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Seg Jan 16, 2012 23:56

A segunda equação é \frac{sen^2x}{1-cosx} + \frac {sec^2x-tg^2x}{secx} = 1?
Obs: Cuidado! O correto é elevar o sen ao quadrado e não o x.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Camila Z » Ter Jan 17, 2012 14:22

Obrigada, mas eu tenho que detalhar "provando" que dá o quadrado do 1º menos o quadrado do 2º... me ajude :$
A segunda é isso mesmo... como fica?
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 20:27

Camila Z escreveu:Obrigada, mas eu tenho que detalhar "provando" que dá o quadrado do 1º menos o quadrado do 2º... me ajude :$

(senx+cosx)(senx-cosx) \Rightarrow sen^2 - senxcosx + senxcosx - cos^2x \Rightarrow sen^2x - cos^2x (Diferença de quadrados!)
Camila Z escreveu:A segunda é isso mesmo... como fica?

Não consegui chegar na igualdade. Mas fiz um desenvolvimento. Antes de mostrá-lo, vou esclarecer algumas coisas.
Se sen^2x + cos^2x = 1 \Rightarrow sen^2x = 1 - cos^2x
Se (a + b)(a - b) = a^2 - b^2 então 1 - cos^2x = 1^2 - cos^2x = (1 + cosx)(1 - cosx)//secx = \frac{1}{cosx}//sec^2x = \frac{1}{cos^2x}//tg^2 = \frac{sen^2x}{cos^2x}

Fiz um desenvolvimento bem detalhado. Se alguém encontrar algo errado, por favor, corrija, pois não consegui resolver a igualdade proposta.
\frac{sen^2x}{1-cosx} + \frac {sec^2x-tg^2x}{secx} = 1 \Rightarrow \frac{1 - cos^2x}{1 - cosx} + \frac{\frac{1}{cos^2x} - \frac{sen^2x}{cos^2x}}{\frac{1}{cosx}} = 1 \Rightarrow \frac{1 - cos^2x}{1 - cosx} + \frac{\frac{1 - sen^2x}{cos^2x}} {\frac{1}{cosx}} = 1  \Rightarrow \frac{1 - cos^2x}{1 - cosx} + \frac{\frac{cos^2x}{cos^2x}} {\frac{1}{cosx}} = 1 \Rightarrow \frac{(1 - cosx)(1 + cosx)}{(1 - cosx)} + \frac{(cos^2x)(cosx)}{(cos^2x)(1)} = 1\Rightarrow 1 + cosx + cosx = 1 \Rightarrow 2cosx = 0 \Rightarrow cosx = 0
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor fraol » Ter Jan 17, 2012 21:40

Arkanus, acompanhei o seu desenvolvimento e o mesmo está correto.

Camila, você já reviu se a segunda expressão é como foi colocada no post?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Camila Z » Ter Jan 17, 2012 22:13

Muito obrigada mesmo, mas vendo o detalhamento da 2ª, eu queria enviar o meu desenvolvimento para vc dar uma olhada... é muito para digitar, como faço para enviar como figura? O meu fica com 1 cosx no final...

Ah, gente, desculpa, recebi uma mensagem de que pode estar errado o sinal de + no meio das frações, parece que é -! Ai sim fica ok, né?
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Ter Jan 17, 2012 23:19

Camila Z escreveu:Muito obrigada mesmo, mas vendo o detalhamento da 2ª, eu queria enviar o meu desenvolvimento para vc dar uma olhada... é muito para digitar, como faço para enviar como figura? O meu fica com 1 cosx no final...

Para postar uma imagem basta hospedá-la no site http://imageshack.us/, pegar o link direto e colocá-lo, na sua mensagem, como em: [img]link[/img]
Camila Z escreveu:Ah, gente, desculpa, recebi uma mensagem de que pode estar errado o sinal de + no meio das frações, parece que é -! Ai sim fica ok, né?

Sim.

Por favor, mande sua resolução para analisarmos. :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Camila Z » Qua Jan 18, 2012 10:03

Imagem
http://profile.imageshack.us/user/camilaz/
Bom... não sei se está certo a postagem da imagem, mas a resolução da identidade tá! rsrs
É o meu 1º desenvolvimento, que tinha feito antes de pedir ajuda pra vcs, está com o sinal + mesmo, não recebi a confirmação de que é - ainda...
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Qua Jan 18, 2012 11:17

Camila Z escreveu:Imagem

Camila, você fez tudo certo até a terceira linha do seu desenvolvimento.
1º) \frac{sen^2x}{1 - cosx} + \frac{1 - sen^2x.cosx}{cos^2x} \Rightarrow \frac{sen^2x(cos^2x) + 1 - sen^2x.cosx(1 - cosx)}{(1 - cosx)(cos^2x)}

Ou
\frac{sen^2x}{1 - cosx} + \frac{1 - sen^2x.cosx}{cos^2x} \Rightarrow \frac{sen^2x}{1 - cosx} + (1 - sen^2x.cosx).\frac{1}{cos^2x} \Rightarrow \frac{sen^2x}{1 - cosx} + (1 - sen^2x.cosx).sec^2x \Rightarrow \frac{sen^2x + (1 - sen^2x.cosx).sec^2x.(1 - cosx)}{1 - cosx}

Isto já torna incorreta sua resolução, mas vou destacar outros pontos.
2º) \frac{\frac{cos^2x.sen^2x + (1 - cosx)1 - sen^2x.cosx}{1 - cosx}}{cos^2x} \not= \frac{cos^2x.sen^2x + 1 - sen^2x.cosx}{cos^2x}
Você não pode cancelar neste caso, pois o (1 - cosx) não está em ambos os lados da soma.
3º) \frac{cos^2x.sen^2x + 1 - sen^2x.cosx}{cos^2x} \not= 1 - cosx
Você cometeu o mesmo erro anterior. Além disso sen^2x - sen^2.cosx \not= cosx

Se eu tiver interpretado errado a sua resolução, ou qualquer dúvida, volte aqui. :y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Camila Z » Qua Jan 18, 2012 20:23

Imagem
http://imageshack.us/photo/my-images/685/imagem2ue.png/

Por favor dê uma olhada na minha correção, se estiver certa consegui chegar no 1!

Aguardo resposta, obrigada.
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Qua Jan 18, 2012 23:20

Camila, não estou conseguindo ver sua resolução. A imagem está meio cortada.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Camila Z » Qui Jan 19, 2012 09:35

Eu cortei a 1ª parte que vc falou que estava certo, mudei só depois da 3ª linha, considerar o início da imagem anterior...
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Qui Jan 19, 2012 11:19

Camila, a parte que eu disse ser correta são as 3 primeiras linhas da sua resolução anterior. Nesta imagem aparece apenas da última linha em diante.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Camila Z » Qui Jan 19, 2012 14:29

Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Qui Jan 19, 2012 15:37

Antepenúltima linha) \frac{sen^2x - sen^4x + 1 - sen^2xcosx - cosx + sen^2x - sen^4x}{1 - sen^2x - cosx + sen^2xcosx} \not= \frac{sen^2x - sen^4x + 1 + sen^2x - sen^4x}{1 - sen^2x }
Para você cancelar o - cosx + sen^2xcosx do denominador, é necessário você colocá-lo em evidência tanto no numerador quanto no denominador.

Última linha) Também não concordo com:
\frac{2sen^2x - 2sen^2xsen^2x + 1}{1 - sen^2x} = \frac{1}{1}
Para isso ser verdade, então:
2sen^2x - 2sen^2xsen^2x + 1 = 1 - sen^2x \Rightarrow 2sen^2x + sen^2x - 1 = 2sen^2xsen^2x - 1\Rightarrow 3sen^2x \not= 2sen^2xsen^2x

Seria verdade se:
\frac{2sen^2x - 2sen^2 - sen^2x + 1}{1 - sen^2x} = \frac{1}{1}
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Arkanus Darondra » Qui Jan 19, 2012 15:41

Para resolver este exercício, seria mais fácil se você notasse que:
\frac{sen^2x}{1-cosx} = 1 + cosx

e que
\frac {sec^2x-tg^2x}{secx} = cosx

Então
1 + cosx - cosx = 1

Obs: Olhe a resolução que fiz acima.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Identidades Trigonométricas

Mensagempor Camila Z » Qui Jan 19, 2012 19:25

Ok, obrigada.
Camila Z
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Seg Jan 16, 2012 22:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Pedagogia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.