Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por Molina » Dom Mai 03, 2009 06:07
Qual o próximo número da sequència:
1, 2, 3, 4, 5, 8, 7, 16, 9 ... 
Good luck!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por rafagondi » Ter Mai 05, 2009 22:14
Ahá!!
Demorei uns 15 minutos olhando essa seqüência! Mas acho que valeu a pena!
Lá vai os números que eu acho que continuam a seqüência:
1, 2, 3, 4, 5, 8, 7, 16, 9 ... 32, 11, 64, 13 ...
________________________________________________
Rafael Agondi - Física/Matemática Bacharelado UNICAMP
-

rafagondi
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Abr 23, 2009 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Licenciatura - UNICAMP
- Andamento: cursando
por lucasguedes » Ter Jul 07, 2009 15:20
rafagondi escreveu:Ahá!!
Demorei uns 15 minutos olhando essa seqüência! Mas acho que valeu a pena!
Lá vai os números que eu acho que continuam a seqüência:
1, 2, 3, 4, 5, 8, 7, 16, 9 ... 32, 11, 64, 13 ...
coloca a formula de sua resposta (como vc fez)
a minha foi essa: 1, 2¹, 3, 2², 5, 2³, 7,

, 9,

...

= 32
-
lucasguedes
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Jun 25, 2009 19:12
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso tecnico em eletrotecnica
- Andamento: cursando
por rafagondi » Ter Jul 07, 2009 20:49
A forma como eu fiz foi a seguinte:
Eu percebi que os números intercalam entre os ímpares e as potências de 2.
Da seguinte forma:
(1°ímpar), 2¹, (2° ímpar), 2², (3° ímpar), 2³, (4° ímpar) ... e assim sucessivamente.
Espero estar certo.
________________________________________________
Rafael Agondi - Física/Matemática Bacharelado UNICAMP
-

rafagondi
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qui Abr 23, 2009 21:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física Licenciatura - UNICAMP
- Andamento: cursando
por lucasguedes » Ter Jul 07, 2009 21:08
rafagondi escreveu:A forma como eu fiz foi a seguinte:
Eu percebi que os números intercalam entre os ímpares e as potências de 2.
Da seguinte forma:
(1°ímpar), 2¹, (2° ímpar), 2², (3° ímpar), 2³, (4° ímpar) ... e assim sucessivamente.
Espero estar certo.
Certíssimo!! =D
-
lucasguedes
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Jun 25, 2009 19:12
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso tecnico em eletrotecnica
- Andamento: cursando
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [sequencia] Calcular limite de sequencia por definição
por amigao » Ter Abr 15, 2014 15:15
- 4 Respostas
- 3732 Exibições
- Última mensagem por e8group

Dom Mai 11, 2014 17:09
Sequências
-
- MAIS UMA QUESTÃO DE G.A
por GABRIELA » Ter Set 29, 2009 18:57
- 3 Respostas
- 2387 Exibições
- Última mensagem por Elcioschin

Qua Set 30, 2009 20:54
Geometria Analítica
-
- Mais uma questão
por GABRIELA » Seg Dez 07, 2009 17:16
- 1 Respostas
- 2094 Exibições
- Última mensagem por Elcioschin

Seg Dez 07, 2009 19:23
Estatística
-
- Mais um desafio..
por victoreis1 » Seg Nov 22, 2010 21:26
- 3 Respostas
- 2396 Exibições
- Última mensagem por Molina

Seg Nov 22, 2010 23:54
Desafios Difíceis
-
- Mais uma questão de log
por my2009 » Qua Jan 26, 2011 11:41
- 1 Respostas
- 1301 Exibições
- Última mensagem por Molina

Qua Jan 26, 2011 15:21
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.