• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[geometria espacial - esferas ] Me ajudem nessa questão ?

[geometria espacial - esferas ] Me ajudem nessa questão ?

Mensagempor anne leticia » Sex Nov 18, 2011 20:48

Bom gente a questão que estou com dúvidas é essa que esta ai embaixo,ja tentei resolvê-la de diversas formas,mas nada deu certo .
Na alternativa 'a' eu fiz este calculo : a²=4xPIxr²
a²=4xPIX(12)²
a²=4PIx(144)
a²= 576
a²= raiz quadrada de 576 = 24
Já a alternativa 'b' ... = c=r²
c=676 ²
c= raiz quadrada de 676 que dá 26 !
Embora eu tenha certeza que esses cálculos que fiz acima não estao de acordo com o que a questao pede sendo assim não estão corretos .

Uma esfera cuja superficie tem area igual a 676 pi cm² é cortada por um plano situado a uma distancia de 12 cm do seu centro, determinando um circulo. Nessas condições, determine:

a] A area desse circulo
b] O comprimento da circunferencia maxima dessa esfera
c] O volume do cone reto cujo vertice é o centro da esfera e a base é o circulo determinado pela intersecçao do plano com a esfera.
anne leticia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 18, 2011 20:29
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [geometria espacial - esferas ] Me ajudem nessa questão

Mensagempor MarceloFantini » Sex Nov 18, 2011 22:38

A área da esfera é dada por A_e = 4 \pi R^2 = 676 \pi \implies R^2 = 169 \implies R = 13 cm. O plano é paralelo à circunferência equatorial, e portanto podemos formar um triângulo retângulo traçando o raio até o círculo, onde teremos a hipotenusa sendo o raio da esfera, a altura sendo a distância do centro do círculo até o centro da esfera e o outro cateto o raio do círculo. Aplicando pitágoras, encontramos r=5 cm. Daí, a área do círculo é A_c = \pi r^2 = 25 \pi cm^2.

O comprimento da circunferência máxima é simplesmente C = 2 \pi R = 26 \pi cm.

O volume do cone será V = \frac{A_b \cdot h}{3} onde a área da base é a área do círculo e a altura a distância entre os centros, logo V = \frac{25 \pi \cdot 12}{3} = 100 \pi cm^3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [geometria espacial - esferas ] Me ajudem nessa questão

Mensagempor anne leticia » Sáb Nov 19, 2011 10:23

OBRIGADA ! Me ajudou bastante !Beijos
anne leticia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Nov 18, 2011 20:29
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59