• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação entre duas fórmulas

Relação entre duas fórmulas

Mensagempor FelipeScheidemantel » Qui Mar 19, 2009 19:19

Boa tarde,

Encontrei este problema numa prova de vestibular:

(UnB-DF)Na física newtoniana, as regras para relacionar a posição
x e o tempo t, medidos a partir de um sistema de coordenadas em
repouso — S —, com a posição x’ e o tempo t’, medidos a partir
de um sistema — S’ — que se move com velocidade V, com
relação ao sistema S, são dadas pelas equações x’ = x – Vt e t’ = t,
que são denominadas transformações de Galileu. Com o advento
da teoria da relatividade especial proposta por Einstein, essas
regras, com o nome de transformações de Lorentz, passaram a ser
dadas por: x’ = \gamma(x - Vt); t’ = \gamma\left(t - \frac{Vx}{c^2} \right), em que \gamma = \frac{1}{\sqrt[]{1 - \frac{V^2}{c^2}}} e c = 300.000 km/s corresponde à velocidade da luz no vácuo,
medida segundo qualquer referencial inercial, pois c é um valor
absoluto. A distância que a luz percorre no vácuo em um ano,
considerando-se que o ano tenha 365 dias e 6 h, é definida como
ano-luz e utilizada para expressar distâncias entre corpos celestes.

Julgue o item abaixo:

Se v’ = x’/t’ e v = x/t, então a relação entre essas velocidades, de acordo com as transformações de Lorentz, é v’ = \frac{v - V}{1 - \frac{vV}{c^2}}, não sendo possível, segundo tais transformações, encontrar velocidade v’ maior que a velocidade da luz.

Tentei resolver o problema de a seguinte maneira:

v’ = \frac{\gamma\left(x - Vt \right)}{\gamma\left(t - \frac{Vx}{c^2} \right)}. Anulando-se os coeficientes \gamma, fiquei com \frac{x - Vt}{t - \frac{Vx}{c^2}}. Em seguida, (x - Vt) \frac{c^2}{tc^2 - Vx}. A partir daí, não sei como simplificar mais a equação para poder julgar o item. Estou preso neste exercício há alguns dias, e qualquer ajuda será apreciada.

Obrigado.
FelipeScheidemantel
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Mar 19, 2009 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.