• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida Limite no infinito "m<n"

Dúvida Limite no infinito "m<n"

Mensagempor elyjunior » Seg Set 26, 2011 22:59

Professor, pode tirar uma dúvida?

Está certo essa resolução de limite no infinito?
lim x? - 2 / 2x³ + 5x =
x-> -?

(x? -2) ? 1 / 2x³ + 5x¹ =

(x? -2) ? (2x?³+ 5x?¹) =

2x¹ + 5x³ - 4x?³ - 10x?¹=

2.1/x?¹ + 5.1/x?³ - 4.1/x³ - 10.1/x¹=

2.1/x?¹= -?
5.1/x?³= -?
-4.1/x³= 0
-10.1/x¹= 0

SOL: -?

Então, está correta? se não, pode corrigir por favor?
Agradecido.
Ah, e as suas aulas são muito boas, salvam muita gente que faz disciplinas de eng., até recomendei p/ alguns amigos da sala! Obg
elyjunior
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Set 26, 2011 22:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Dúvida Limite no infinito "m<n"

Mensagempor Renato_RJ » Ter Set 27, 2011 13:44

Campeão, acho que o tópico não foi direcionado para mim, pois ainda não estou formado, mas posso dar uma sugestão ??

Já pensou em colocar o x^4 em evidência ?? Veja:

\frac{x^4 \cdot (1 - \frac{2}{x^4})}{x^4 \cdot (\frac{2}{x} + \frac{5}{x^3})}

Quando aplicar o limite, o numerador tenderá a 1 (pois \frac{x^4}{x^4} = 1) e o denominador a 0 pela esquerda, isto é, pelos números menores do que zero, logo o limite tenderá a - \infty.

Espero não ter errado nada e, com isso, ter lhe ajudado...

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Dúvida Limite no infinito "m<n"

Mensagempor LuizAquino » Ter Set 27, 2011 17:09

elyjunior escreveu:(x? -2) ? 1 / 2x³ + 5x¹ =

(x? -2) ? (2x?³+ 5x?¹) =


O seu erro começou nesse passo.

Note que se a e b são não nulos, então tipicamente teremos \frac{1}{a^m + b^n} \neq a^{-m} + b^{-n} .

Por exemplo, note que:

(i) \frac{1}{3^2 + 4^3} = \frac{1}{9 + 64} = \frac{1}{73}

(ii) 3^{-2} + 4^{-3} = \frac{1}{9} + \frac{1}{64} = \frac{73}{576}

Comparando (i) e (ii), temos que \frac{1}{3^2 + 4^3} \neq 3^{-2} + 4^{-3} .

Para calcular esse limite, um procedimento correto é usar o que foi indicado por Renato_RJ.

Observações
Em sua mensagem você escreveu:

elyjunior escreveu:lim x? - 2 / 2x³ + 5x =
x-> -?


Interpretando ao "pé da letra" isso é o mesmo que:

\lim_{x\to -\infty} x^4 - \frac{2}{2x^3} + 5x

Entretanto, ao que parece você deseja na verdade o limite:

\lim_{x\to -\infty} \frac{x^4 - 2}{2x^3 + 5x}

Nesse caso, você deveria ter escrito algo como:

lim (x? - 2) / (2x³ + 5x)
x-> -?

Note a importância de usar os parênteses (e os outros delimitadores) de forma adequada!

Aproveito ainda para indicar que você procure usar o LaTeX na escrita das notações matemáticas. Para saber mais a respeito disso, veja o tópico:
DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74

Se precisar, use também o Editor de Fórmulas disponível na criação de suas mensagens.

Por fim, eu gostaria de lhe dar uma dica. Não direcione a sua mensagem para um usuário específico do fórum! Lembre-se que a ideia em um fórum é que todos podem ajudar!
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?