• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Encontrando as raízes!

Encontrando as raízes!

Mensagempor gfdbruno » Qui Ago 25, 2011 10:36

Ao dividir o polinômio A(x), que possui grau 4 e coeficientes reais, pelo polinômio B(x)= x³ + 4x, obtêm-se o quociente Q(x) e resto R(x). Sabe-se que 2 é uma raiz de R(x). Assim, sendo 'n' o número total de raízes reais de A(x), conclui-se que o conjunto de todos os valores que 'n' pode assumir é:

A - { 0, 2 ,4 }
B - { 0 , 2 }
C - { 0 ,4 }
D - { 2 ,4 }
E - { 4 }

Até onde cheguei: A(x) = B(x).Q(x) + R(x). O número 2 zera R(x) e B(x), logo 2 também é raiz de A(x). O polinômio B(x) tem outras duas raízes: 0 e -2. Então A(0) = R(0) e A(-2) = R(-2). Sei também que Q(x) te grau 1. Com essas informações, elimino as opções C e E. Como é um polinômio de grau 4, só pode ter 0, 2 ou 4 raízes reais. Logo a opção A também é descartada. Restam as opções B e D. Alguém me ajuda?
gfdbruno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 25, 2011 10:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Encontrando as raízes!

Mensagempor gfdbruno » Qui Ago 25, 2011 12:53

Já resolvido!
gfdbruno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 25, 2011 10:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}