por gfdbruno » Qui Ago 25, 2011 10:36
Ao dividir o polinômio A(x), que possui grau 4 e coeficientes reais, pelo polinômio B(x)= x³ + 4x, obtêm-se o quociente Q(x) e resto R(x). Sabe-se que 2 é uma raiz de R(x). Assim, sendo 'n' o número total de raízes reais de A(x), conclui-se que o conjunto de todos os valores que 'n' pode assumir é:
A - { 0, 2 ,4 }
B - { 0 , 2 }
C - { 0 ,4 }
D - { 2 ,4 }
E - { 4 }
Até onde cheguei: A(x) = B(x).Q(x) + R(x). O número 2 zera R(x) e B(x), logo 2 também é raiz de A(x). O polinômio B(x) tem outras duas raízes: 0 e -2. Então A(0) = R(0) e A(-2) = R(-2). Sei também que Q(x) te grau 1. Com essas informações, elimino as opções C e E. Como é um polinômio de grau 4, só pode ter 0, 2 ou 4 raízes reais. Logo a opção A também é descartada. Restam as opções B e D. Alguém me ajuda?
-
gfdbruno
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Ago 25, 2011 10:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por gfdbruno » Qui Ago 25, 2011 12:53
Já resolvido!
-
gfdbruno
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Ago 25, 2011 10:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Encontrando assíntotas... gráfico
por Talitafreire » Qui Jul 09, 2009 17:29
- 2 Respostas
- 2502 Exibições
- Última mensagem por Talitafreire

Qui Jul 09, 2009 18:03
Cálculo: Limites, Derivadas e Integrais
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7985 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
-
- [Radiciação] Raízes dentro de raízes
por mottasky » Ter Set 13, 2011 22:00
- 2 Respostas
- 2430 Exibições
- Última mensagem por mottasky

Qui Set 15, 2011 15:52
Álgebra Elementar
-
- [Equação da reta] Encontrando equação paramétrica.
por Vitor Sanches » Qua Jun 26, 2013 17:54
- 0 Respostas
- 5998 Exibições
- Última mensagem por Vitor Sanches

Qua Jun 26, 2013 17:54
Geometria Analítica
-
- [Parábola] Encontrando o ponto na parábola
por Ana_Rodrigues » Ter Nov 22, 2011 20:44
- 1 Respostas
- 4877 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 21:38
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.